diff --git a/modules/calib3d/test/test_affine3.cpp b/modules/calib3d/test/test_affine3.cpp index cc94d99c19..03fe869c63 100644 --- a/modules/calib3d/test/test_affine3.cpp +++ b/modules/calib3d/test/test_affine3.cpp @@ -54,8 +54,8 @@ TEST(Calib3d_Affine3f, accuracy) cv::Rodrigues(rvec, expected); - ASSERT_EQ(0, norm(cv::Mat(affine.matrix, false).colRange(0, 3).rowRange(0, 3) != expected)); - ASSERT_EQ(0, norm(cv::Mat(affine.linear()) != expected)); + ASSERT_EQ(0, cvtest::norm(cv::Mat(affine.matrix, false).colRange(0, 3).rowRange(0, 3) != expected, cv::NORM_L2)); + ASSERT_EQ(0, cvtest::norm(cv::Mat(affine.linear()) != expected, cv::NORM_L2)); cv::Matx33d R = cv::Matx33d::eye(); @@ -77,7 +77,7 @@ TEST(Calib3d_Affine3f, accuracy) cv::Mat diff; cv::absdiff(expected, result.matrix, diff); - ASSERT_LT(cv::norm(diff, cv::NORM_INF), 1e-15); + ASSERT_LT(cvtest::norm(diff, cv::NORM_INF), 1e-15); } TEST(Calib3d_Affine3f, accuracy_rvec) @@ -103,6 +103,6 @@ TEST(Calib3d_Affine3f, accuracy_rvec) cv::Rodrigues(R, vo); //std::cout << "O:" <<(cv::getTickCount() - s)*1000/cv::getTickFrequency() << std::endl; - ASSERT_LT(cv::norm(va - vo), 1e-9); + ASSERT_LT(cvtest::norm(va, vo, cv::NORM_L2), 1e-9); } } diff --git a/modules/calib3d/test/test_affine3d_estimator.cpp b/modules/calib3d/test/test_affine3d_estimator.cpp index f31e2e7324..c677275c95 100644 --- a/modules/calib3d/test/test_affine3d_estimator.cpp +++ b/modules/calib3d/test/test_affine3d_estimator.cpp @@ -108,9 +108,9 @@ bool CV_Affine3D_EstTest::test4Points() estimateAffine3D(fpts, tpts, aff_est, outliers); const double thres = 1e-3; - if (norm(aff_est, aff, NORM_INF) > thres) + if (cvtest::norm(aff_est, aff, NORM_INF) > thres) { - //cout << norm(aff_est, aff, NORM_INF) << endl; + //cout << cvtest::norm(aff_est, aff, NORM_INF) << endl; ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return false; } @@ -161,7 +161,7 @@ bool CV_Affine3D_EstTest::testNPoints() } const double thres = 1e-4; - if (norm(aff_est, aff, NORM_INF) > thres) + if (cvtest::norm(aff_est, aff, NORM_INF) > thres) { cout << "aff est: " << aff_est << endl; cout << "aff ref: " << aff << endl; diff --git a/modules/calib3d/test/test_cameracalibration.cpp b/modules/calib3d/test/test_cameracalibration.cpp index 7d0bdaeb10..da9b931f53 100644 --- a/modules/calib3d/test/test_cameracalibration.cpp +++ b/modules/calib3d/test/test_cameracalibration.cpp @@ -215,7 +215,7 @@ void CV_ProjectPointsTest::prepare_to_validation( int /*test_case_idx*/ ) cvTsProjectPoints( m, vec2, m2v_jac ); cvTsCopy( vec, vec2 ); - theta0 = cvNorm( vec2, 0, CV_L2 ); + theta0 = cvtest::norm( cvarrtomat(vec2), 0, CV_L2 ); theta1 = fmod( theta0, CV_PI*2 ); if( theta1 > CV_PI ) @@ -225,7 +225,7 @@ void CV_ProjectPointsTest::prepare_to_validation( int /*test_case_idx*/ ) if( calc_jacobians ) { //cvInvert( v2m_jac, m2v_jac, CV_SVD ); - if( cvNorm(&test_mat[OUTPUT][3],0,CV_C) < 1000 ) + if( cvtest::norm(cvarrtomat(&test_mat[OUTPUT][3]), 0, CV_C) < 1000 ) { cvTsGEMM( &test_mat[OUTPUT][1], &test_mat[OUTPUT][3], 1, 0, 0, &test_mat[OUTPUT][4], @@ -1112,7 +1112,7 @@ void CV_ProjectPointsTest::run(int) rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); } calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdrot ); - err = norm( dpdrot, valDpdrot, NORM_INF ); + err = cvtest::norm( dpdrot, valDpdrot, NORM_INF ); if( err > 3 ) { ts->printf( cvtest::TS::LOG, "bad dpdrot: too big difference = %g\n", err ); @@ -1130,7 +1130,7 @@ void CV_ProjectPointsTest::run(int) rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); } calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdt ); - if( norm( dpdt, valDpdt, NORM_INF ) > 0.2 ) + if( cvtest::norm( dpdt, valDpdt, NORM_INF ) > 0.2 ) { ts->printf( cvtest::TS::LOG, "bad dpdtvec\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; @@ -1153,7 +1153,7 @@ void CV_ProjectPointsTest::run(int) project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs, rightImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdf ); - if ( norm( dpdf, valDpdf ) > 0.2 ) + if ( cvtest::norm( dpdf, valDpdf, NORM_L2 ) > 0.2 ) { ts->printf( cvtest::TS::LOG, "bad dpdf\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; @@ -1174,7 +1174,7 @@ void CV_ProjectPointsTest::run(int) project( objPoints, rvec, tvec, rightCameraMatrix, distCoeffs, rightImgPoints[1], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpdc ); - if ( norm( dpdc, valDpdc ) > 0.2 ) + if ( cvtest::norm( dpdc, valDpdc, NORM_L2 ) > 0.2 ) { ts->printf( cvtest::TS::LOG, "bad dpdc\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; @@ -1193,7 +1193,7 @@ void CV_ProjectPointsTest::run(int) rightImgPoints[i], valDpdrot, valDpdt, valDpdf, valDpdc, valDpddist, 0 ); } calcdfdx( leftImgPoints, rightImgPoints, dEps, valDpddist ); - if( norm( dpddist, valDpddist ) > 0.3 ) + if( cvtest::norm( dpddist, valDpddist, NORM_L2 ) > 0.3 ) { ts->printf( cvtest::TS::LOG, "bad dpddist\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; @@ -1481,8 +1481,8 @@ void CV_StereoCalibrationTest::run( int ) Mat eye33 = Mat::eye(3,3,CV_64F); Mat R1t = R1.t(), R2t = R2.t(); - if( norm(R1t*R1 - eye33) > 0.01 || - norm(R2t*R2 - eye33) > 0.01 || + if( cvtest::norm(R1t*R1 - eye33, NORM_L2) > 0.01 || + cvtest::norm(R2t*R2 - eye33, NORM_L2) > 0.01 || abs(determinant(F)) > 0.01) { ts->printf( cvtest::TS::LOG, "The computed (by rectify) R1 and R2 are not orthogonal," @@ -1505,7 +1505,7 @@ void CV_StereoCalibrationTest::run( int ) //check that Tx after rectification is equal to distance between cameras double tx = fabs(P2.at(0, 3) / P2.at(0, 0)); - if (fabs(tx - norm(T)) > 1e-5) + if (fabs(tx - cvtest::norm(T, NORM_L2)) > 1e-5) { ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; @@ -1556,7 +1556,7 @@ void CV_StereoCalibrationTest::run( int ) Mat reprojectedPoints; perspectiveTransform(sparsePoints, reprojectedPoints, Q); - if (norm(triangulatedPoints - reprojectedPoints) / sqrt((double)pointsCount) > requiredAccuracy) + if (cvtest::norm(triangulatedPoints, reprojectedPoints, NORM_L2) / sqrt((double)pointsCount) > requiredAccuracy) { ts->printf( cvtest::TS::LOG, "Points reprojected with a matrix Q and points reconstructed by triangulation are different, testcase %d\n", testcase); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); @@ -1581,7 +1581,7 @@ void CV_StereoCalibrationTest::run( int ) { Mat error = newHomogeneousPoints2.row(i) * typedF * newHomogeneousPoints1.row(i).t(); CV_Assert(error.rows == 1 && error.cols == 1); - if (norm(error) > constraintAccuracy) + if (cvtest::norm(error, NORM_L2) > constraintAccuracy) { ts->printf( cvtest::TS::LOG, "Epipolar constraint is violated after correctMatches, testcase %d\n", testcase); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); diff --git a/modules/calib3d/test/test_cameracalibration_artificial.cpp b/modules/calib3d/test/test_cameracalibration_artificial.cpp index 07e5894b96..94f70e7ccf 100644 --- a/modules/calib3d/test/test_cameracalibration_artificial.cpp +++ b/modules/calib3d/test/test_cameracalibration_artificial.cpp @@ -204,7 +204,7 @@ protected: Rodrigues(rvecs[i], rmat); Rodrigues(rvecs_est[i], rmat_est); - if (norm(rmat_est, rmat) > eps* (norm(rmat) + dlt)) + if (cvtest::norm(rmat_est, rmat, NORM_L2) > eps* (cvtest::norm(rmat, NORM_L2) + dlt)) { if (err_count++ < errMsgNum) { @@ -213,7 +213,8 @@ protected: else { ts->printf( cvtest::TS::LOG, "%d) Bad accuracy in returned rvecs (rotation matrs). Index = %d\n", r, i); - ts->printf( cvtest::TS::LOG, "%d) norm(rot_mat_est - rot_mat_exp) = %f, norm(rot_mat_exp) = %f \n", r, norm(rmat_est, rmat), norm(rmat)); + ts->printf( cvtest::TS::LOG, "%d) norm(rot_mat_est - rot_mat_exp) = %f, norm(rot_mat_exp) = %f \n", r, + cvtest::norm(rmat_est, rmat, NORM_L2), cvtest::norm(rmat, NORM_L2)); } } diff --git a/modules/calib3d/test/test_fundam.cpp b/modules/calib3d/test/test_fundam.cpp index 749faf1257..e2245c12b0 100644 --- a/modules/calib3d/test/test_fundam.cpp +++ b/modules/calib3d/test/test_fundam.cpp @@ -738,7 +738,7 @@ void CV_RodriguesTest::prepare_to_validation( int /*test_case_idx*/ ) if( calc_jacobians ) { //cvInvert( v2m_jac, m2v_jac, CV_SVD ); - double nrm = norm(test_mat[REF_OUTPUT][3],CV_C); + double nrm = cvtest::norm(test_mat[REF_OUTPUT][3], CV_C); if( FLT_EPSILON < nrm && nrm < 1000 ) { gemm( test_mat[OUTPUT][1], test_mat[OUTPUT][3], @@ -1409,8 +1409,8 @@ void CV_EssentialMatTest::prepare_to_validation( int test_case_idx ) double* pose_prop1 = (double*)test_mat[REF_OUTPUT][2].data; double* pose_prop2 = (double*)test_mat[OUTPUT][2].data; - double terr1 = norm(Rt0.col(3) / norm(Rt0.col(3)) + test_mat[TEMP][3]); - double terr2 = norm(Rt0.col(3) / norm(Rt0.col(3)) - test_mat[TEMP][3]); + double terr1 = cvtest::norm(Rt0.col(3) / norm(Rt0.col(3)) + test_mat[TEMP][3], NORM_L2); + double terr2 = cvtest::norm(Rt0.col(3) / norm(Rt0.col(3)) - test_mat[TEMP][3], NORM_L2); Mat rvec; Rodrigues(Rt0.colRange(0, 3), rvec); pose_prop1[0] = 0; diff --git a/modules/calib3d/test/test_homography.cpp b/modules/calib3d/test/test_homography.cpp index 5bb50bb265..59d92905a4 100644 --- a/modules/calib3d/test/test_homography.cpp +++ b/modules/calib3d/test/test_homography.cpp @@ -119,7 +119,7 @@ bool CV_HomographyTest::check_matrix_size(const cv::Mat& H) bool CV_HomographyTest::check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff) { - diff = cv::norm(original, found, norm_type); + diff = cvtest::norm(original, found, norm_type); return diff <= max_diff; } diff --git a/modules/calib3d/test/test_solvepnp_ransac.cpp b/modules/calib3d/test/test_solvepnp_ransac.cpp index e6f25466d8..37e0959d16 100644 --- a/modules/calib3d/test/test_solvepnp_ransac.cpp +++ b/modules/calib3d/test/test_solvepnp_ransac.cpp @@ -299,8 +299,8 @@ TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency) solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2); } - double rnorm = cv::norm(rvec1, rvec2, NORM_INF); - double tnorm = cv::norm(tvec1, tvec2, NORM_INF); + double rnorm = cvtest::norm(rvec1, rvec2, NORM_INF); + double tnorm = cvtest::norm(tvec1, tvec2, NORM_INF); EXPECT_LT(rnorm, 1e-6); EXPECT_LT(tnorm, 1e-6); diff --git a/modules/calib3d/test/test_stereomatching.cpp b/modules/calib3d/test/test_stereomatching.cpp index 8beb9f905e..8c377de0c1 100644 --- a/modules/calib3d/test/test_stereomatching.cpp +++ b/modules/calib3d/test/test_stereomatching.cpp @@ -279,7 +279,7 @@ float dispRMS( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& m checkTypeAndSizeOfMask( mask, sz ); pointsCount = countNonZero(mask); } - return 1.f/sqrt((float)pointsCount) * (float)norm(computedDisp, groundTruthDisp, NORM_L2, mask); + return 1.f/sqrt((float)pointsCount) * (float)cvtest::norm(computedDisp, groundTruthDisp, NORM_L2, mask); } /* diff --git a/modules/calib3d/test/test_undistort_points.cpp b/modules/calib3d/test/test_undistort_points.cpp index 5dabd213db..0eb3552272 100644 --- a/modules/calib3d/test/test_undistort_points.cpp +++ b/modules/calib3d/test/test_undistort_points.cpp @@ -84,7 +84,7 @@ void CV_UndistortTest::run(int /* start_from */) Mat p; perspectiveTransform(undistortedPoints, p, intrinsics); undistortedPoints = p; - double diff = norm(Mat(realUndistortedPoints), undistortedPoints); + double diff = cvtest::norm(Mat(realUndistortedPoints), undistortedPoints, NORM_L2); if (diff > thresh) { ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); diff --git a/modules/core/src/stat.cpp b/modules/core/src/stat.cpp index adc24119ec..0e3d44ed6b 100644 --- a/modules/core/src/stat.cpp +++ b/modules/core/src/stat.cpp @@ -2364,7 +2364,7 @@ double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _m #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); - normType &= 7; + normType &= NORM_TYPE_MASK; CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR || ((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) ); size_t total_size = src1.total(); diff --git a/modules/core/test/test_arithm.cpp b/modules/core/test/test_arithm.cpp index 626b44cbc5..2527e5397a 100644 --- a/modules/core/test/test_arithm.cpp +++ b/modules/core/test/test_arithm.cpp @@ -1362,7 +1362,8 @@ TEST_P(ElemWiseTest, accuracy) double maxErr = op->getMaxErr(depth); vector pos; - ASSERT_PRED_FORMAT2(cvtest::MatComparator(maxErr, op->context), dst0, dst) << "\nsrc[0] ~ " << cvtest::MatInfo(!src.empty() ? src[0] : Mat()) << "\ntestCase #" << testIdx << "\n"; + ASSERT_PRED_FORMAT2(cvtest::MatComparator(maxErr, op->context), dst0, dst) << "\nsrc[0] ~ " << + cvtest::MatInfo(!src.empty() ? src[0] : Mat()) << "\ntestCase #" << testIdx << "\n"; } } @@ -1500,7 +1501,7 @@ protected: } Mat d1; d.convertTo(d1, depth); - CV_Assert( norm(c, d1, CV_C) <= DBL_EPSILON ); + CV_Assert( cvtest::norm(c, d1, CV_C) <= DBL_EPSILON ); } Mat_ tmpSrc(100,100); @@ -1574,7 +1575,7 @@ TEST_P(Mul1, One) cv::multiply(3, src, dst); - ASSERT_EQ(0, cv::norm(dst, ref_dst, cv::NORM_INF)); + ASSERT_EQ(0, cvtest::norm(dst, ref_dst, cv::NORM_INF)); } INSTANTIATE_TEST_CASE_P(Arithm, Mul1, testing::Values(Size(2, 2), Size(1, 1))); diff --git a/modules/core/test/test_dxt.cpp b/modules/core/test/test_dxt.cpp index 1c0c7b00bf..9fc12c183d 100644 --- a/modules/core/test/test_dxt.cpp +++ b/modules/core/test/test_dxt.cpp @@ -855,7 +855,7 @@ protected: merge(mv, 2, srcz); dft(srcz, dstz); dft(src, dst, DFT_COMPLEX_OUTPUT); - if(norm(dst, dstz, NORM_INF) > 1e-3) + if (cvtest::norm(dst, dstz, NORM_INF) > 1e-3) { cout << "actual:\n" << dst << endl << endl; cout << "reference:\n" << dstz << endl << endl; diff --git a/modules/core/test/test_eigen.cpp b/modules/core/test/test_eigen.cpp index 21859e59b8..671378443e 100644 --- a/modules/core/test/test_eigen.cpp +++ b/modules/core/test/test_eigen.cpp @@ -175,7 +175,7 @@ bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues { std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl; std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl; - std:: cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl; + std::cout << "Size of src symmetric matrix: " << src.rows << " * " << src.cols << endl; std::cout << endl; CV_Error(CORE_EIGEN_ERROR_COUNT, MESSAGE_ERROR_COUNT); return false; } @@ -187,7 +187,7 @@ bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues int n = src.rows, s = sign(high_index); int right_eigen_pair_count = n - max(0, low_index) - ((int)((n/2.0)*(s*s-s)) + (1+s-s*s)*(n - (high_index+1))); - if (!((evectors.rows == right_eigen_pair_count) && (evectors.cols == right_eigen_pair_count))) + if (!(evectors.rows == right_eigen_pair_count && evectors.cols == right_eigen_pair_count)) { std::cout << endl; std::cout << "Checking sizes of eigen vectors matrix " << evectors << "..." << endl; std::cout << "Number of rows: " << evectors.rows << " Number of cols: " << evectors.cols << endl; @@ -196,7 +196,7 @@ bool Core_EigenTest::check_pair_count(const cv::Mat& src, const cv::Mat& evalues return false; } - if (!((evalues.rows == right_eigen_pair_count) && (evalues.cols == 1))) + if (!(evalues.rows == right_eigen_pair_count && evalues.cols == 1)) { std::cout << endl; std::cout << "Checking sizes of eigen values matrix " << evalues << "..." << endl; std::cout << "Number of rows: " << evalues.rows << " Number of cols: " << evalues.cols << endl; @@ -212,9 +212,9 @@ void Core_EigenTest::print_information(const size_t norm_idx, const cv::Mat& src { switch (NORM_TYPE[norm_idx]) { - case cv::NORM_L1: {std::cout << "L1"; break;} - case cv::NORM_L2: {std::cout << "L2"; break;} - case cv::NORM_INF: {std::cout << "INF"; break;} + case cv::NORM_L1: std::cout << "L1"; break; + case cv::NORM_L2: std::cout << "L2"; break; + case cv::NORM_INF: std::cout << "INF"; break; default: break; } @@ -234,7 +234,7 @@ bool Core_EigenTest::check_orthogonality(const cv::Mat& U) for (int i = 0; i < COUNT_NORM_TYPES; ++i) { - double diff = cv::norm(UUt, E, NORM_TYPE[i]); + double diff = cvtest::norm(UUt, E, NORM_TYPE[i]); if (diff > eps_vec) { std::cout << endl; std::cout << "Checking orthogonality of matrix " << U << ": "; @@ -271,12 +271,12 @@ bool Core_EigenTest::check_pairs_order(const cv::Mat& eigen_values) for (int i = 0; i < (int)(eigen_values.total() - 1); ++i) if (!(eigen_values.at(i, 0) > eigen_values.at(i+1, 0))) { - std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl; - std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl; - std::cout << endl; - CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in ascending order."); - return false; - } + std::cout << endl; std::cout << "Checking order of eigen values vector " << eigen_values << "..." << endl; + std::cout << "Pair of indexes with non ascending of eigen values: (" << i << ", " << i+1 << ")." << endl; + std::cout << endl; + CV_Error(CORE_EIGEN_ERROR_ORDER, "Eigen values are not sorted in ascending order."); + return false; + } break; } @@ -296,11 +296,14 @@ bool Core_EigenTest::test_pairs(const cv::Mat& src) cv::eigen(src, eigen_values, eigen_vectors); - if (!check_pair_count(src, eigen_values, eigen_vectors)) return false; + if (!check_pair_count(src, eigen_values, eigen_vectors)) + return false; - if (!check_orthogonality (eigen_vectors)) return false; + if (!check_orthogonality (eigen_vectors)) + return false; - if (!check_pairs_order(eigen_values)) return false; + if (!check_pairs_order(eigen_values)) + return false; cv::Mat eigen_vectors_t; cv::transpose(eigen_vectors, eigen_vectors_t); @@ -340,7 +343,7 @@ bool Core_EigenTest::test_pairs(const cv::Mat& src) for (int i = 0; i < COUNT_NORM_TYPES; ++i) { - double diff = cv::norm(disparity, NORM_TYPE[i]); + double diff = cvtest::norm(disparity, NORM_TYPE[i]); if (diff > eps_vec) { std::cout << endl; std::cout << "Checking accuracy of eigen vectors computing for matrix " << src << ": "; @@ -369,7 +372,7 @@ bool Core_EigenTest::test_values(const cv::Mat& src) for (int i = 0; i < COUNT_NORM_TYPES; ++i) { - double diff = cv::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i]); + double diff = cvtest::norm(eigen_values_1, eigen_values_2, NORM_TYPE[i]); if (diff > eps_val) { std::cout << endl; std::cout << "Checking accuracy of eigen values computing for matrix " << src << ": "; diff --git a/modules/core/test/test_io.cpp b/modules/core/test/test_io.cpp index e6c412f869..ba56f76a6f 100644 --- a/modules/core/test/test_io.cpp +++ b/modules/core/test/test_io.cpp @@ -480,9 +480,9 @@ protected: fs["g1"] >> og1; CV_Assert( mi2.empty() ); CV_Assert( mv2.empty() ); - CV_Assert( norm(mi3, mi4, CV_C) == 0 ); + CV_Assert( cvtest::norm(Mat(mi3), Mat(mi4), CV_C) == 0 ); CV_Assert( mv4.size() == 1 ); - double n = norm(mv3[0], mv4[0], CV_C); + double n = cvtest::norm(mv3[0], mv4[0], CV_C); CV_Assert( vudt2.empty() ); CV_Assert( vudt3 == vudt4 ); CV_Assert( n == 0 ); diff --git a/modules/core/test/test_mat.cpp b/modules/core/test/test_mat.cpp index 86aca01608..ac27bd7b53 100644 --- a/modules/core/test/test_mat.cpp +++ b/modules/core/test/test_mat.cpp @@ -340,7 +340,7 @@ protected: Mat Qv = Q * v; Mat lv = eval.at(i,0) * v; - err = norm( Qv, lv ); + err = cvtest::norm( Qv, lv, NORM_L2 ); if( err > eigenEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of eigen(); err = %f\n", err ); @@ -350,7 +350,7 @@ protected: } // check pca eigenvalues evalEps = 1e-6, evecEps = 1e-3; - err = norm( rPCA.eigenvalues, subEval ); + err = cvtest::norm( rPCA.eigenvalues, subEval, NORM_L2 ); if( err > evalEps ) { ts->printf( cvtest::TS::LOG, "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err ); @@ -362,11 +362,11 @@ protected: { Mat r0 = rPCA.eigenvectors.row(i); Mat r1 = subEvec.row(i); - err = norm( r0, r1, CV_L2 ); + err = cvtest::norm( r0, r1, CV_L2 ); if( err > evecEps ) { r1 *= -1; - double err2 = norm(r0, r1, CV_L2); + double err2 = cvtest::norm(r0, r1, CV_L2); if( err2 > evecEps ) { Mat tmp; @@ -390,7 +390,7 @@ protected: // check pca project Mat subEvec_t = subEvec.t(); Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t; - err = norm(rPrjTestPoints.row(i), prj, CV_RELATIVE_L2); + err = cvtest::norm(rPrjTestPoints.row(i), prj, CV_RELATIVE_L2); if( err > prjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_ROW); err = %f\n", err ); @@ -399,7 +399,7 @@ protected: } // check pca backProject Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg; - err = norm( rBackPrjTestPoints.row(i), backPrj, CV_RELATIVE_L2 ); + err = cvtest::norm( rBackPrjTestPoints.row(i), backPrj, CV_RELATIVE_L2 ); if( err > backPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW); err = %f\n", err ); @@ -412,14 +412,14 @@ protected: cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents ); diffPrjEps = 1, diffBackPrjEps = 1; Mat ocvPrjTestPoints = cPCA.project(rTestPoints.t()); - err = norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); + err = cvtest::norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); if( err > diffPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } - err = norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 ); + err = cvtest::norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 ); if( err > diffBackPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); err = %f\n", err ); @@ -433,9 +433,9 @@ protected: Mat rvPrjTestPoints = cPCA.project(rTestPoints.t()); if( cPCA.eigenvectors.rows > maxComponents) - err = norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); + err = cvtest::norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); else - err = norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), CV_RELATIVE_L2 ); + err = cvtest::norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), CV_RELATIVE_L2 ); if( err > diffPrjEps ) { @@ -443,7 +443,7 @@ protected: ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } - err = norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 ); + err = cvtest::norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 ); if( err > diffBackPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f\n", err ); @@ -467,14 +467,14 @@ protected: cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints ); cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints ); - err = norm(prjTestPoints, rPrjTestPoints, CV_RELATIVE_L2); + err = cvtest::norm(prjTestPoints, rPrjTestPoints, CV_RELATIVE_L2); if( err > diffPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } - err = norm(backPrjTestPoints, rBackPrjTestPoints, CV_RELATIVE_L2); + err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints, CV_RELATIVE_L2); if( err > diffBackPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err ); @@ -495,14 +495,14 @@ protected: cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints ); cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints ); - err = norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); + err = cvtest::norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); if( err > diffPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } - err = norm(backPrjTestPoints, rBackPrjTestPoints.t(), CV_RELATIVE_L2); + err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints.t(), CV_RELATIVE_L2); if( err > diffBackPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err ); @@ -518,19 +518,19 @@ protected: PCA lPCA; fs.open( "PCA_store.yml", FileStorage::READ ); lPCA.read( fs.root() ); - err = norm( rPCA.eigenvectors, lPCA.eigenvectors, CV_RELATIVE_L2 ); + err = cvtest::norm( rPCA.eigenvectors, lPCA.eigenvectors, CV_RELATIVE_L2 ); if( err > 0 ) { ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } - err = norm( rPCA.eigenvalues, lPCA.eigenvalues, CV_RELATIVE_L2 ); + err = cvtest::norm( rPCA.eigenvalues, lPCA.eigenvalues, CV_RELATIVE_L2 ); if( err > 0 ) { ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); } - err = norm( rPCA.mean, lPCA.mean, CV_RELATIVE_L2 ); + err = cvtest::norm( rPCA.mean, lPCA.mean, CV_RELATIVE_L2 ); if( err > 0 ) { ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err ); @@ -731,9 +731,9 @@ void Core_ArrayOpTest::run( int /* start_from */) } minMaxLoc(_all_vals, &min_val, &max_val); - double _norm0 = norm(_all_vals, CV_C); - double _norm1 = norm(_all_vals, CV_L1); - double _norm2 = norm(_all_vals, CV_L2); + double _norm0 = cvtest::norm(_all_vals, CV_C); + double _norm1 = cvtest::norm(_all_vals, CV_L1); + double _norm2 = cvtest::norm(_all_vals, CV_L2); for( i = 0; i < nz0; i++ ) { diff --git a/modules/core/test/test_math.cpp b/modules/core/test/test_math.cpp index 859ebe60ea..0d64fe8c02 100644 --- a/modules/core/test/test_math.cpp +++ b/modules/core/test/test_math.cpp @@ -2433,7 +2433,7 @@ protected: } Mat convertedRes = resInRad * 180. / CV_PI; - double normDiff = norm(convertedRes - resInDeg, NORM_INF); + double normDiff = cvtest::norm(convertedRes - resInDeg, NORM_INF); if(normDiff > FLT_EPSILON * 180.) { ts->printf(cvtest::TS::LOG, "There are incorrect result angles (in radians)\n"); @@ -2569,11 +2569,11 @@ TEST(Core_Invert, small) cv::Mat b = a.t()*a; cv::Mat c, i = Mat_::eye(3, 3); cv::invert(b, c, cv::DECOMP_LU); //std::cout << b*c << std::endl; - ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 ); + ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 ); cv::invert(b, c, cv::DECOMP_SVD); //std::cout << b*c << std::endl; - ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 ); + ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 ); cv::invert(b, c, cv::DECOMP_CHOLESKY); //std::cout << b*c << std::endl; - ASSERT_LT( cv::norm(b*c, i, CV_C), 0.1 ); + ASSERT_LT( cvtest::norm(b*c, i, CV_C), 0.1 ); } ///////////////////////////////////////////////////////////////////////////////////////////////////// @@ -2621,7 +2621,7 @@ TEST(Core_SVD, flt) Mat X, B1; solve(A, B, X, DECOMP_SVD); B1 = A*X; - EXPECT_LE(norm(B1, B, NORM_L2 + NORM_RELATIVE), FLT_EPSILON*10); + EXPECT_LE(cvtest::norm(B1, B, NORM_L2 + NORM_RELATIVE), FLT_EPSILON*10); } diff --git a/modules/core/test/test_operations.cpp b/modules/core/test/test_operations.cpp index 8215ea93f5..543fb31ac7 100644 --- a/modules/core/test/test_operations.cpp +++ b/modules/core/test/test_operations.cpp @@ -83,11 +83,11 @@ protected: void checkDiff(const Mat& m1, const Mat& m2, const string& s) { - if (norm(m1, m2, NORM_INF) != 0) throw test_excep(s); + if (cvtest::norm(m1, m2, NORM_INF) != 0) throw test_excep(s); } void checkDiffF(const Mat& m1, const Mat& m2, const string& s) { - if (norm(m1, m2, NORM_INF) > 1e-5) throw test_excep(s); + if (cvtest::norm(m1, m2, NORM_INF) > 1e-5) throw test_excep(s); } }; @@ -488,7 +488,7 @@ bool CV_OperationsTest::TestSubMatAccess() coords.push_back(T_bs(i)); //std::cout << T_bs1(i) << std::endl; } - CV_Assert( norm(coords, T_bs.reshape(1,1), NORM_INF) == 0 ); + CV_Assert( cvtest::norm(coords, T_bs.reshape(1,1), NORM_INF) == 0 ); } catch (const test_excep& e) { @@ -776,14 +776,14 @@ bool CV_OperationsTest::TestTemplateMat() mvf.push_back(Mat_::zeros(4, 3)); merge(mvf, mf2); split(mf2, mvf2); - CV_Assert( norm(mvf2[0], mvf[0], CV_C) == 0 && - norm(mvf2[1], mvf[1], CV_C) == 0 ); + CV_Assert( cvtest::norm(mvf2[0], mvf[0], CV_C) == 0 && + cvtest::norm(mvf2[1], mvf[1], CV_C) == 0 ); { Mat a(2,2,CV_32F,1.f); Mat b(1,2,CV_32F,1.f); Mat c = (a*b.t()).t(); - CV_Assert( norm(c, CV_L1) == 4. ); + CV_Assert( cvtest::norm(c, CV_L1) == 4. ); } bool badarg_catched = false; @@ -988,7 +988,7 @@ bool CV_OperationsTest::operations1() Vec v10dzero; for (int ii = 0; ii < 10; ++ii) { - if (!v10dzero[ii] == 0.0) + if (v10dzero[ii] != 0.0) throw test_excep(); } @@ -1014,13 +1014,13 @@ bool CV_OperationsTest::operations1() Matx33f b(1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f); Mat c; add(Mat::zeros(3, 3, CV_32F), b, c); - CV_Assert( norm(b, c, CV_C) == 0 ); + CV_Assert( cvtest::norm(b, c, CV_C) == 0 ); add(Mat::zeros(3, 3, CV_64F), b, c, noArray(), c.type()); - CV_Assert( norm(b, c, CV_C) == 0 ); + CV_Assert( cvtest::norm(b, c, CV_C) == 0 ); add(Mat::zeros(6, 1, CV_64F), 1, c, noArray(), c.type()); - CV_Assert( norm(Matx61f(1.f, 1.f, 1.f, 1.f, 1.f, 1.f), c, CV_C) == 0 ); + CV_Assert( cvtest::norm(Matx61f(1.f, 1.f, 1.f, 1.f, 1.f, 1.f), c, CV_C) == 0 ); vector pt2d(3); vector pt3d(2); @@ -1066,11 +1066,11 @@ bool CV_OperationsTest::TestSVD() Mat A = (Mat_(3,4) << 1, 2, -1, 4, 2, 4, 3, 5, -1, -2, 6, 7); Mat x; SVD::solveZ(A,x); - if( norm(A*x, CV_C) > FLT_EPSILON ) + if( cvtest::norm(A*x, CV_C) > FLT_EPSILON ) throw test_excep(); SVD svd(A, SVD::FULL_UV); - if( norm(A*svd.vt.row(3).t(), CV_C) > FLT_EPSILON ) + if( cvtest::norm(A*svd.vt.row(3).t(), CV_C) > FLT_EPSILON ) throw test_excep(); Mat Dp(3,3,CV_32FC1); @@ -1094,11 +1094,11 @@ bool CV_OperationsTest::TestSVD() W=decomp.w; Mat I = Mat::eye(3, 3, CV_32F); - if( norm(U*U.t(), I, CV_C) > FLT_EPSILON || - norm(Vt*Vt.t(), I, CV_C) > FLT_EPSILON || + if( cvtest::norm(U*U.t(), I, CV_C) > FLT_EPSILON || + cvtest::norm(Vt*Vt.t(), I, CV_C) > FLT_EPSILON || W.at(2) < 0 || W.at(1) < W.at(2) || W.at(0) < W.at(1) || - norm(U*Mat::diag(W)*Vt, Q, CV_C) > FLT_EPSILON ) + cvtest::norm(U*Mat::diag(W)*Vt, Q, CV_C) > FLT_EPSILON ) throw test_excep(); } catch(const test_excep&) diff --git a/modules/core/test/test_rand.cpp b/modules/core/test/test_rand.cpp index 1d9b3dd0d1..a94624b89a 100644 --- a/modules/core/test/test_rand.cpp +++ b/modules/core/test/test_rand.cpp @@ -174,7 +174,7 @@ void Core_RandTest::run( int ) } } - if( maxk >= 1 && norm(arr[0], arr[1], NORM_INF) > eps) + if( maxk >= 1 && cvtest::norm(arr[0], arr[1], NORM_INF) > eps) { ts->printf( cvtest::TS::LOG, "RNG output depends on the array lengths (some generated numbers get lost?)" ); ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); diff --git a/modules/core/test/test_umat.cpp b/modules/core/test/test_umat.cpp index b7deb48955..d7ae7a9385 100644 --- a/modules/core/test/test_umat.cpp +++ b/modules/core/test/test_umat.cpp @@ -563,12 +563,12 @@ protected: void checkDiff(const Mat& m1, const Mat& m2, const string& s) { - if (norm(m1, m2, NORM_INF) != 0) + if (cvtest::norm(m1, m2, NORM_INF) != 0) throw test_excep(s); } void checkDiffF(const Mat& m1, const Mat& m2, const string& s) { - if (norm(m1, m2, NORM_INF) > 1e-5) + if (cvtest::norm(m1, m2, NORM_INF) > 1e-5) throw test_excep(s); } }; @@ -721,7 +721,7 @@ TEST(Core_UMat, getUMat) um.setTo(17); } - double err = norm(m, ref, NORM_INF); + double err = cvtest::norm(m, ref, NORM_INF); if (err > 0) { std::cout << "m: " << std::endl << m << std::endl; @@ -742,7 +742,7 @@ TEST(UMat, Sync) um.setTo(cv::Scalar::all(19)); - EXPECT_EQ(0, cv::norm(um.getMat(ACCESS_READ), cv::Mat(um.size(), um.type(), 19), NORM_INF)); + EXPECT_EQ(0, cvtest::norm(um.getMat(ACCESS_READ), cv::Mat(um.size(), um.type(), 19), NORM_INF)); } TEST(UMat, setOpenCL) diff --git a/modules/features2d/test/test_fast.cpp b/modules/features2d/test/test_fast.cpp index d500ce549c..0bca41b541 100644 --- a/modules/features2d/test/test_fast.cpp +++ b/modules/features2d/test/test_fast.cpp @@ -119,8 +119,8 @@ void CV_FastTest::run( int ) read( fs["exp_kps2"], exp_kps2, Mat() ); fs.release(); - if ( exp_kps1.size != kps1.size || 0 != norm(exp_kps1, kps1, NORM_L2) || - exp_kps2.size != kps2.size || 0 != norm(exp_kps2, kps2, NORM_L2)) + if ( exp_kps1.size != kps1.size || 0 != cvtest::norm(exp_kps1, kps1, NORM_L2) || + exp_kps2.size != kps2.size || 0 != cvtest::norm(exp_kps2, kps2, NORM_L2)) { ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return; diff --git a/modules/features2d/test/test_nearestneighbors.cpp b/modules/features2d/test/test_nearestneighbors.cpp index e61dfce6bb..3d80b0db17 100644 --- a/modules/features2d/test/test_nearestneighbors.cpp +++ b/modules/features2d/test/test_nearestneighbors.cpp @@ -193,8 +193,8 @@ int CV_KDTreeTest_CPP::checkGetPoins( const Mat& data ) // 3d way tr->getPoints( idxs, res3 ); - if( norm( res1, data, NORM_L1) != 0 || - norm( res3, data, NORM_L1) != 0) + if( cvtest::norm( res1, data, NORM_L1) != 0 || + cvtest::norm( res3, data, NORM_L1) != 0) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; } @@ -232,7 +232,7 @@ int CV_KDTreeTest_CPP::findNeighbors( Mat& points, Mat& neighbors ) } // compare results - if( norm( neighbors, neighbors2, NORM_L1 ) != 0 ) + if( cvtest::norm( neighbors, neighbors2, NORM_L1 ) != 0 ) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; @@ -284,7 +284,7 @@ int CV_FlannTest::knnSearch( Mat& points, Mat& neighbors ) } // compare results - if( norm( neighbors, neighbors1, NORM_L1 ) != 0 ) + if( cvtest::norm( neighbors, neighbors1, NORM_L1 ) != 0 ) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; @@ -316,7 +316,7 @@ int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors ) neighbors1.at(i,j) = *it; } // compare results - if( norm( neighbors, neighbors1, NORM_L1 ) != 0 ) + if( cvtest::norm( neighbors, neighbors1, NORM_L1 ) != 0 ) return cvtest::TS::FAIL_BAD_ACCURACY; return cvtest::TS::OK; diff --git a/modules/highgui/test/test_drawing.cpp b/modules/highgui/test/test_drawing.cpp index 0769f0ce7f..9d9e17dde2 100644 --- a/modules/highgui/test/test_drawing.cpp +++ b/modules/highgui/test/test_drawing.cpp @@ -76,7 +76,7 @@ void CV_DrawingTest::run( int ) } else { - float err = (float)norm( testImg, valImg, CV_RELATIVE_L1 ); + float err = (float)cvtest::norm( testImg, valImg, CV_RELATIVE_L1 ); float Eps = 0.9f; if( err > Eps) { @@ -229,7 +229,7 @@ int CV_DrawingTest_CPP::checkLineIterator( Mat& img ) for(int i = 0; i < it.count; ++it, i++ ) { Vec3b v = (Vec3b)(*(*it)) - img.at(300,i); - float err = (float)norm( v ); + float err = (float)cvtest::norm( v, NORM_L2 ); if( err != 0 ) { ts->printf( ts->LOG, "LineIterator works incorrect" ); @@ -395,7 +395,7 @@ int CV_DrawingTest_C::checkLineIterator( Mat& _img ) for(int i = 0; i < count; i++ ) { Vec3b v = (Vec3b)(*(it.ptr)) - _img.at(300,i); - float err = (float)norm( v ); + float err = (float)cvtest::norm( v, NORM_L2 ); if( err != 0 ) { ts->printf( ts->LOG, "CvLineIterator works incorrect" ); diff --git a/modules/highgui/test/test_ffmpeg.cpp b/modules/highgui/test/test_ffmpeg.cpp index 5dcd67be60..f8491d1a69 100644 --- a/modules/highgui/test/test_ffmpeg.cpp +++ b/modules/highgui/test/test_ffmpeg.cpp @@ -163,7 +163,7 @@ public: CV_Assert( !img0.empty() && !img.empty() && img_next.empty() ); - double diff = norm(img0, img, CV_C); + double diff = cvtest::norm(img0, img, CV_C); CV_Assert( diff == 0 ); } catch(...) diff --git a/modules/highgui/test/test_grfmt.cpp b/modules/highgui/test/test_grfmt.cpp index 2f76406296..e4d3e70461 100644 --- a/modules/highgui/test/test_grfmt.cpp +++ b/modules/highgui/test/test_grfmt.cpp @@ -121,7 +121,7 @@ public: CV_Assert(img.type() == img_test.type()); CV_Assert(num_channels == img_test.channels()); - double n = norm(img, img_test); + double n = cvtest::norm(img, img_test, NORM_L2); if ( n > 1.0) { ts->printf(ts->LOG, "norm = %f \n", n); @@ -151,7 +151,7 @@ public: CV_Assert(img.size() == img_test.size()); CV_Assert(img.type() == img_test.type()); - double n = norm(img, img_test); + double n = cvtest::norm(img, img_test, NORM_L2); if ( n > 1.0) { ts->printf(ts->LOG, "norm = %f \n", n); @@ -183,7 +183,7 @@ public: CV_Assert(img.type() == img_test.type()); - double n = norm(img, img_test); + double n = cvtest::norm(img, img_test, NORM_L2); if ( n > 1.0) { ts->printf(ts->LOG, "norm = %f \n", n); @@ -210,7 +210,7 @@ public: { Mat rle = imread(string(ts->get_data_path()) + "readwrite/rle8.bmp"); Mat bmp = imread(string(ts->get_data_path()) + "readwrite/ordinary.bmp"); - if (norm(rle-bmp)>1.e-10) + if (cvtest::norm(rle-bmp, NORM_L2)>1.e-10) ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); } catch(...) @@ -406,7 +406,7 @@ TEST(Highgui_Jpeg, encode_decode_progressive_jpeg) EXPECT_NO_THROW(cv::imwrite(output_normal, img)); cv::Mat img_jpg_normal = cv::imread(output_normal); - EXPECT_EQ(0, cv::norm(img_jpg_progressive, img_jpg_normal, NORM_INF)); + EXPECT_EQ(0, cvtest::norm(img_jpg_progressive, img_jpg_normal, NORM_INF)); remove(output_progressive.c_str()); } @@ -430,7 +430,7 @@ TEST(Highgui_Jpeg, encode_decode_optimize_jpeg) EXPECT_NO_THROW(cv::imwrite(output_normal, img)); cv::Mat img_jpg_normal = cv::imread(output_normal); - EXPECT_EQ(0, cv::norm(img_jpg_optimized, img_jpg_normal, NORM_INF)); + EXPECT_EQ(0, cvtest::norm(img_jpg_optimized, img_jpg_normal, NORM_INF)); remove(output_optimized.c_str()); } @@ -612,11 +612,11 @@ TEST(Highgui_WebP, encode_decode_lossless_webp) cv::Mat decode = cv::imdecode(buf, IMREAD_COLOR); ASSERT_FALSE(decode.empty()); - EXPECT_TRUE(cv::norm(decode, img_webp, NORM_INF) == 0); + EXPECT_TRUE(cvtest::norm(decode, img_webp, NORM_INF) == 0); ASSERT_FALSE(img_webp.empty()); - EXPECT_TRUE(cv::norm(img, img_webp, NORM_INF) == 0); + EXPECT_TRUE(cvtest::norm(img, img_webp, NORM_INF) == 0); } TEST(Highgui_WebP, encode_decode_lossy_webp) diff --git a/modules/imgproc/test/test_bilateral_filter.cpp b/modules/imgproc/test/test_bilateral_filter.cpp index 0bfc3dc4cc..ba4c9d57b8 100644 --- a/modules/imgproc/test/test_bilateral_filter.cpp +++ b/modules/imgproc/test/test_bilateral_filter.cpp @@ -264,7 +264,7 @@ namespace cvtest reference_dst.convertTo(reference_dst, type); } - double e = norm(reference_dst, _parallel_dst); + double e = cvtest::norm(reference_dst, _parallel_dst, NORM_L2); if (e > eps) { ts->printf(cvtest::TS::CONSOLE, "actual error: %g, expected: %g", e, eps); diff --git a/modules/imgproc/test/test_connectedcomponents.cpp b/modules/imgproc/test/test_connectedcomponents.cpp index a9567da970..dd4d8339a0 100644 --- a/modules/imgproc/test/test_connectedcomponents.cpp +++ b/modules/imgproc/test/test_connectedcomponents.cpp @@ -91,12 +91,12 @@ void CV_ConnectedComponentsTest::run( int /* start_from */) exp = labelImage; } - if (0 != norm(labelImage > 0, exp > 0, NORM_INF)) + if (0 != cvtest::norm(labelImage > 0, exp > 0, NORM_INF)) { ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); return; } - if (nLabels != norm(labelImage, NORM_INF)+1) + if (nLabels != cvtest::norm(labelImage, NORM_INF)+1) { ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); return; diff --git a/modules/imgproc/test/test_convhull.cpp b/modules/imgproc/test/test_convhull.cpp index 2b6169cf5b..6b5144f924 100644 --- a/modules/imgproc/test/test_convhull.cpp +++ b/modules/imgproc/test/test_convhull.cpp @@ -566,6 +566,8 @@ int CV_ConvHullTest::validate_test_results( int test_case_idx ) hull = cvCreateMat( 1, hull_count, CV_32FC2 ); mask = cvCreateMat( 1, hull_count, CV_8UC1 ); cvZero( mask ); + Mat _mask = cvarrToMat(mask); + h = (CvPoint2D32f*)(hull->data.ptr); // extract convex hull points @@ -643,7 +645,7 @@ int CV_ConvHullTest::validate_test_results( int test_case_idx ) mask->data.ptr[idx] = (uchar)1; } - if( cvNorm( mask, 0, CV_L1 ) != hull_count ) + if( cvtest::norm( _mask, Mat::zeros(_mask.dims, _mask.size, _mask.type()), NORM_L1 ) != hull_count ) { ts->printf( cvtest::TS::LOG, "Not every convex hull vertex coincides with some input point\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; diff --git a/modules/imgproc/test/test_houghLines.cpp b/modules/imgproc/test/test_houghLines.cpp index fa9ecafef0..660b3dd583 100644 --- a/modules/imgproc/test/test_houghLines.cpp +++ b/modules/imgproc/test/test_houghLines.cpp @@ -137,7 +137,7 @@ void CV_HoughLinesTest::run_test(int type) if( exp_lines.size != lines.size ) transpose(lines, lines); - if ( exp_lines.size != lines.size || norm(exp_lines, lines, NORM_INF) > 1e-4 ) + if ( exp_lines.size != lines.size || cvtest::norm(exp_lines, lines, NORM_INF) > 1e-4 ) { ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH); return; diff --git a/modules/imgproc/test/test_imgwarp.cpp b/modules/imgproc/test/test_imgwarp.cpp index 53f7d5c2fc..b0897483a2 100644 --- a/modules/imgproc/test/test_imgwarp.cpp +++ b/modules/imgproc/test/test_imgwarp.cpp @@ -1530,7 +1530,7 @@ TEST(Imgproc_resize_area, regression) } } - ASSERT_EQ(norm(one_channel_diff, cv::NORM_INF), 0); + ASSERT_EQ(cvtest::norm(one_channel_diff, cv::NORM_INF), 0); } diff --git a/modules/imgproc/test/test_imgwarp_strict.cpp b/modules/imgproc/test/test_imgwarp_strict.cpp index 76d65b198b..07c5e0cc85 100644 --- a/modules/imgproc/test/test_imgwarp_strict.cpp +++ b/modules/imgproc/test/test_imgwarp_strict.cpp @@ -254,7 +254,7 @@ void CV_ImageWarpBaseTest::validate_results() const // fabs(rD[dx] - D[dx]) < 250.0f && rD[dx] <= 255.0f && D[dx] <= 255.0f && rD[dx] >= 0.0f && D[dx] >= 0.0f) { - PRINT_TO_LOG("\nNorm of the difference: %lf\n", norm(reference_dst, _dst, NORM_INF)); + PRINT_TO_LOG("\nNorm of the difference: %lf\n", cvtest::norm(reference_dst, _dst, NORM_INF)); PRINT_TO_LOG("Error in (dx, dy): (%d, %d)\n", dx / cn + 1, dy + 1); PRINT_TO_LOG("Tuple (rD, D): (%f, %f)\n", rD[dx], D[dx]); PRINT_TO_LOG("Dsize: (%d, %d)\n", dsize.width / cn, dsize.height); diff --git a/modules/ml/test/test_mltests2.cpp b/modules/ml/test/test_mltests2.cpp index 4f6c95921e..560c449321 100644 --- a/modules/ml/test/test_mltests2.cpp +++ b/modules/ml/test/test_mltests2.cpp @@ -52,7 +52,9 @@ void nbayes_check_data( CvMLData* _data ) CV_Error( CV_StsBadArg, "missing values are not supported" ); const CvMat* var_types = _data->get_var_types(); bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL; - if( ( fabs( cvNorm( var_types, 0, CV_L1 ) - + + Mat _var_types = cvarrToMat(var_types); + if( ( fabs( cvtest::norm( _var_types, Mat::zeros(_var_types.dims, _var_types.size, _var_types.type()), CV_L1 ) - (var_types->rows + var_types->cols - 2)*CV_VAR_ORDERED - CV_VAR_CATEGORICAL ) > FLT_EPSILON ) || !is_classifier ) CV_Error( CV_StsBadArg, "incorrect types of predictors or responses" ); diff --git a/modules/ml/test/test_save_load.cpp b/modules/ml/test/test_save_load.cpp index 7300185b4d..8b58ce534a 100644 --- a/modules/ml/test/test_save_load.cpp +++ b/modules/ml/test/test_save_load.cpp @@ -184,8 +184,8 @@ TEST(DISABLED_ML_SVM, linear_save_load) svm3.predict(samples, r3); double eps = 1e-4; - EXPECT_LE(norm(r1, r2, NORM_INF), eps); - EXPECT_LE(norm(r1, r3, NORM_INF), eps); + EXPECT_LE(cvtest::norm(r1, r2, NORM_INF), eps); + EXPECT_LE(cvtest::norm(r1, r3, NORM_INF), eps); remove(tname.c_str()); } diff --git a/modules/objdetect/test/test_cascadeandhog.cpp b/modules/objdetect/test/test_cascadeandhog.cpp index 746a48ca97..4a311e49e9 100644 --- a/modules/objdetect/test/test_cascadeandhog.cpp +++ b/modules/objdetect/test/test_cascadeandhog.cpp @@ -1087,7 +1087,7 @@ void HOGDescriptorTester::detect(const Mat& img, } const double eps = 0.0; - double diff_norm = norm(Mat(actual_weights) - Mat(weights), NORM_L2); + double diff_norm = cvtest::norm(actual_weights, weights, NORM_L2); if (diff_norm > eps) { ts->printf(cvtest::TS::SUMMARY, "Weights for found locations aren't equal.\n" @@ -1168,7 +1168,7 @@ void HOGDescriptorTester::compute(InputArray _img, vector& descriptors, std::vector actual_descriptors; actual_hog->compute(img, actual_descriptors, winStride, padding, locations); - double diff_norm = cv::norm(Mat(actual_descriptors) - Mat(descriptors), NORM_L2); + double diff_norm = cvtest::norm(actual_descriptors, descriptors, NORM_L2); const double eps = 0.0; if (diff_norm > eps) { @@ -1318,7 +1318,7 @@ void HOGDescriptorTester::computeGradient(const Mat& img, Mat& grad, Mat& qangle const double eps = 0.0; for (i = 0; i < 2; ++i) { - double diff_norm = norm(reference_mats[i] - actual_mats[i], NORM_L2); + double diff_norm = cvtest::norm(reference_mats[i], actual_mats[i], NORM_L2); if (diff_norm > eps) { ts->printf(cvtest::TS::LOG, "%s matrices are not equal\n" diff --git a/modules/ts/include/opencv2/ts.hpp b/modules/ts/include/opencv2/ts.hpp index 8febfca9c8..457f00b3e2 100644 --- a/modules/ts/include/opencv2/ts.hpp +++ b/modules/ts/include/opencv2/ts.hpp @@ -47,6 +47,8 @@ using cv::Scalar; using cv::Size; using cv::Point; using cv::Rect; +using cv::InputArray; +using cv::noArray; class CV_EXPORTS TS; @@ -124,8 +126,8 @@ CV_EXPORTS void initUndistortMap( const Mat& a, const Mat& k, Size sz, Mat& mapx CV_EXPORTS void minMaxLoc(const Mat& src, double* minval, double* maxval, vector* minloc, vector* maxloc, const Mat& mask=Mat()); -CV_EXPORTS double norm(const Mat& src, int normType, const Mat& mask=Mat()); -CV_EXPORTS double norm(const Mat& src1, const Mat& src2, int normType, const Mat& mask=Mat()); +CV_EXPORTS double norm(InputArray src, int normType, InputArray mask=noArray()); +CV_EXPORTS double norm(InputArray src1, InputArray src2, int normType, InputArray mask=noArray()); CV_EXPORTS Scalar mean(const Mat& src, const Mat& mask=Mat()); CV_EXPORTS bool cmpUlps(const Mat& data, const Mat& refdata, int expMaxDiff, double* realMaxDiff, vector* idx); diff --git a/modules/ts/include/opencv2/ts/ocl_test.hpp b/modules/ts/include/opencv2/ts/ocl_test.hpp index 28ff674911..5dd25dba4f 100644 --- a/modules/ts/include/opencv2/ts/ocl_test.hpp +++ b/modules/ts/include/opencv2/ts/ocl_test.hpp @@ -243,9 +243,9 @@ struct CV_EXPORTS TestUtils static inline double checkNormRelative(InputArray m1, InputArray m2, InputArray mask = noArray()) { - return cv::norm(m1.getMat(), m2.getMat(), cv::NORM_INF, mask) / + return cvtest::norm(m1.getMat(), m2.getMat(), cv::NORM_INF, mask) / std::max((double)std::numeric_limits::epsilon(), - (double)std::max(cv::norm(m1.getMat(), cv::NORM_INF), norm(m2.getMat(), cv::NORM_INF))); + (double)std::max(cvtest::norm(m1.getMat(), cv::NORM_INF), cvtest::norm(m2.getMat(), cv::NORM_INF))); } }; diff --git a/modules/ts/src/ocl_test.cpp b/modules/ts/src/ocl_test.cpp index 0291cadbed..a2a75cf888 100644 --- a/modules/ts/src/ocl_test.cpp +++ b/modules/ts/src/ocl_test.cpp @@ -225,12 +225,12 @@ Mat TestUtils::readImageType(const String &fname, int type) double TestUtils::checkNorm1(InputArray m, InputArray mask) { - return norm(m.getMat(), NORM_INF, mask); + return cvtest::norm(m.getMat(), NORM_INF, mask.getMat()); } double TestUtils::checkNorm2(InputArray m1, InputArray m2, InputArray mask) { - return norm(m1.getMat(), m2.getMat(), NORM_INF, mask); + return cvtest::norm(m1.getMat(), m2.getMat(), NORM_INF, mask.getMat()); } double TestUtils::checkSimilarity(InputArray m1, InputArray m2) diff --git a/modules/ts/src/ts_func.cpp b/modules/ts/src/ts_func.cpp index 89c91b98f1..e3563caa4f 100644 --- a/modules/ts/src/ts_func.cpp +++ b/modules/ts/src/ts_func.cpp @@ -1238,15 +1238,16 @@ norm_(const _Tp* src1, const _Tp* src2, size_t total, int cn, int normType, doub } -double norm(const Mat& src, int normType, const Mat& mask) +double norm(InputArray _src, int normType, InputArray _mask) { + Mat src = _src.getMat(), mask = _mask.getMat(); if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) { if( !mask.empty() ) { Mat temp; bitwise_and(src, mask, temp); - return norm(temp, normType, Mat()); + return cvtest::norm(temp, normType, Mat()); } CV_Assert( src.depth() == CV_8U ); @@ -1317,8 +1318,12 @@ double norm(const Mat& src, int normType, const Mat& mask) } -double norm(const Mat& src1, const Mat& src2, int normType, const Mat& mask) +double norm(InputArray _src1, InputArray _src2, int normType, InputArray _mask) { + Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); + bool isRelative = (normType & NORM_RELATIVE) != 0; + normType &= ~NORM_RELATIVE; + if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) { Mat temp; @@ -1391,7 +1396,7 @@ double norm(const Mat& src1, const Mat& src2, int normType, const Mat& mask) } if( normType0 == NORM_L2 ) result = sqrt(result); - return result; + return isRelative ? result / (cvtest::norm(src2, normType) + DBL_EPSILON) : result; }