|
|
|
@ -24,6 +24,10 @@ USAGE: |
|
|
|
|
[--nanotrack_backbone NANOTRACK_BACKBONE] |
|
|
|
|
[--nanotrack_headneck NANOTRACK_TARGET] |
|
|
|
|
[--vittrack_net VITTRACK_MODEL] |
|
|
|
|
[--vittrack_net VITTRACK_MODEL] |
|
|
|
|
[--tracking_score_threshold TRACKING SCORE THRESHOLD FOR ONLY VITTRACK] |
|
|
|
|
[--backend CHOOSE ONE OF COMPUTATION BACKEND] |
|
|
|
|
[--target CHOOSE ONE OF COMPUTATION TARGET] |
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
# Python 2/3 compatibility |
|
|
|
@ -37,6 +41,11 @@ import argparse |
|
|
|
|
|
|
|
|
|
from video import create_capture, presets |
|
|
|
|
|
|
|
|
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV, |
|
|
|
|
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA) |
|
|
|
|
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, |
|
|
|
|
cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16) |
|
|
|
|
|
|
|
|
|
class App(object): |
|
|
|
|
|
|
|
|
|
def __init__(self, args): |
|
|
|
@ -57,15 +66,22 @@ class App(object): |
|
|
|
|
params.model = self.args.dasiamrpn_net |
|
|
|
|
params.kernel_cls1 = self.args.dasiamrpn_kernel_cls1 |
|
|
|
|
params.kernel_r1 = self.args.dasiamrpn_kernel_r1 |
|
|
|
|
params.backend = args.backend |
|
|
|
|
params.target = args.target |
|
|
|
|
tracker = cv.TrackerDaSiamRPN_create(params) |
|
|
|
|
elif self.trackerAlgorithm == 'nanotrack': |
|
|
|
|
params = cv.TrackerNano_Params() |
|
|
|
|
params.backbone = args.nanotrack_backbone |
|
|
|
|
params.neckhead = args.nanotrack_headneck |
|
|
|
|
params.backend = args.backend |
|
|
|
|
params.target = args.target |
|
|
|
|
tracker = cv.TrackerNano_create(params) |
|
|
|
|
elif self.trackerAlgorithm == 'vittrack': |
|
|
|
|
params = cv.TrackerVit_Params() |
|
|
|
|
params.net = args.vittrack_net |
|
|
|
|
params.tracking_score_threshold = args.tracking_score_threshold |
|
|
|
|
params.backend = args.backend |
|
|
|
|
params.target = args.target |
|
|
|
|
tracker = cv.TrackerVit_create(params) |
|
|
|
|
else: |
|
|
|
|
sys.exit("Tracker {} is not recognized. Please use one of three available: mil, goturn, dasiamrpn, nanotrack.".format(self.trackerAlgorithm)) |
|
|
|
@ -141,6 +157,24 @@ if __name__ == '__main__': |
|
|
|
|
parser.add_argument("--nanotrack_backbone", type=str, default="nanotrack_backbone_sim.onnx", help="Path to onnx model of NanoTrack backBone") |
|
|
|
|
parser.add_argument("--nanotrack_headneck", type=str, default="nanotrack_head_sim.onnx", help="Path to onnx model of NanoTrack headNeck") |
|
|
|
|
parser.add_argument("--vittrack_net", type=str, default="vitTracker.onnx", help="Path to onnx model of vittrack") |
|
|
|
|
parser.add_argument('--tracking_score_threshold', type=float, help="Tracking score threshold. If a bbox of score >= 0.3, it is considered as found ") |
|
|
|
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, |
|
|
|
|
help="Choose one of computation backends: " |
|
|
|
|
"%d: automatically (by default), " |
|
|
|
|
"%d: Halide language (http://halide-lang.org/), " |
|
|
|
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
|
|
|
"%d: OpenCV implementation, " |
|
|
|
|
"%d: VKCOM, " |
|
|
|
|
"%d: CUDA"% backends) |
|
|
|
|
parser.add_argument("--target", choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, |
|
|
|
|
help="Choose one of target computation devices: " |
|
|
|
|
'%d: CPU target (by default), ' |
|
|
|
|
'%d: OpenCL, ' |
|
|
|
|
'%d: OpenCL fp16 (half-float precision), ' |
|
|
|
|
'%d: VPU, ' |
|
|
|
|
'%d: VULKAN, ' |
|
|
|
|
'%d: CUDA, ' |
|
|
|
|
'%d: CUDA fp16 (half-float preprocess)'% targets) |
|
|
|
|
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
App(args).run() |
|
|
|
|