LBP classifier was refactored, added parameter for max size of detected object

pull/2/head
Marina Kolpakova 13 years ago
parent e6f7e4d83e
commit a9f2f522e7
  1. 3
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 64
      modules/gpu/src/cascadeclassifier.cpp
  3. 75
      modules/gpu/src/cuda/lbp.cu
  4. 55
      modules/gpu/src/opencv2/gpu/device/lbp.hpp

@ -1435,7 +1435,8 @@ public:
bool load(const std::string& filename);
void release();
int detectMultiScale(const GpuMat& image, GpuMat& scaledImageBuffer, GpuMat& objectsBuf, double scaleFactor = 1.1, int minNeighbors = 4/*, Size minSize = Size()*/);
int detectMultiScale(const GpuMat& image, GpuMat& scaledImageBuffer, GpuMat& objectsBuf, double scaleFactor = 1.1, int minNeighbors = 4,
cv::Size maxObjectSize = cv::Size()/*, Size minSize = Size()*/);
void preallocateIntegralBuffer(cv::Size desired);
bool findLargestObject;

@ -48,20 +48,6 @@ using namespace cv;
using namespace cv::gpu;
using namespace std;
struct Stage
{
int first;
int ntrees;
float threshold;
};
struct DTreeNode
{
int featureIdx;
int left;
int right;
};
#if !defined (HAVE_CUDA)
// ============ old fashioned haar cascade ==============================================//
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() { throw_nogpu(); }
@ -128,6 +114,13 @@ bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string& classifierAsXml)
#define GPU_CC_FEATURES "features"
#define GPU_CC_RECT "rect"
struct Stage
{
int first;
int ntrees;
float threshold;
};
// currently only stump based boost classifiers are supported
bool CascadeClassifier_GPU_LBP::read(const FileNode &root)
{
@ -279,12 +272,26 @@ namespace cv { namespace gpu { namespace device
{
namespace lbp
{
void cascadeClassify(const DevMem2Db stages, const DevMem2Di trees, const DevMem2Db nodes, const DevMem2Df leaves, const DevMem2Di subsets, const DevMem2Db features,
const DevMem2Di integral, int workWidth, int workHeight, int clWidth, int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects, int minNeighbors = 4, cudaStream_t stream = 0);
void classifyStump(const DevMem2Db mstages,
const int nstages,
const DevMem2Di mnodes,
const DevMem2Df mleaves,
const DevMem2Di msubsets,
const DevMem2Db mfeatures,
const DevMem2Di integral,
const int workWidth,
const int workHeight,
const int clWidth,
const int clHeight,
float scale,
int step,
int subsetSize,
DevMem2D_<int4> objects);
}
}}}
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, GpuMat& scaledImageBuffer, GpuMat& objects, double scaleFactor, int minNeighbors /*, Size minSize=Size()*/)
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, GpuMat& scaledImageBuffer, GpuMat& objects,
double scaleFactor, int minNeighbors, cv::Size maxObjectSize /*, Size minSize=Size()*/)
{
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U );
CV_Assert(!empty());
@ -299,28 +306,35 @@ int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, Gp
// temp solution
objects.create(image.rows, image.cols, CV_32SC4);
scaledImageBuffer.create(image.size(), image.type());
if (maxObjectSize == cv::Size())
maxObjectSize = image.size();
scaledImageBuffer.create(image.rows + 1, image.cols + 1, CV_8U);
// TODO: specify max objects size
for( double factor = 1; ; factor *= scaleFactor )
{
cv::Size windowSize(cvRound(NxM.width * factor), cvRound(NxM.height * factor));
cv::Size scaledImageSize(cvRound( image.cols / factor ), cvRound( image.rows / factor ));
cv::Size processingRectSize( scaledImageSize.width - NxM.width + 1, scaledImageSize.height - NxM.height + 1 );
// nothing to do
if (processingRectSize.width <= 0 || processingRectSize.height <= 0 )
break;
// TODO: min max object sizes cheching
cv::gpu::resize(image, scaledImageBuffer, scaledImageSize, 0, 0, INTER_NEAREST);
//prepare image for evaluation
if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height )
break;
// if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height )
// continue;
cv::gpu::resize(image, scaledImageBuffer, scaledImageSize, 0, 0, CV_INTER_LINEAR);
integral.create(cv::Size(scaledImageSize.width + 1, scaledImageSize.height + 1), CV_32SC1);
cv::gpu::integral(scaledImageBuffer, integral);
int step = (factor <= 2.) + 1;
cv::gpu::device::lbp::cascadeClassify(stage_mat, trees_mat, nodes_mat, leaves_mat, subsets_mat, features_mat,
integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, scaleFactor, step, subsetSize, objects, minNeighbors);
cv::gpu::device::lbp::classifyStump(stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat, leaves_mat, subsets_mat, features_mat,
integral, processingRectSize.width, processingRectSize.height, windowSize.width, windowSize.height, scaleFactor, step, subsetSize, objects);
}
// TODO: reject levels

@ -46,54 +46,69 @@ namespace cv { namespace gpu { namespace device
{
namespace lbp
{
__global__ void lbp_classify(const DevMem2D_< ::cv::gpu::device::Stage> stages, const DevMem2Di trees, const DevMem2D_< ::cv::gpu::device::ClNode> nodes,
const DevMem2Df leaves, const DevMem2Di subsets,
const DevMem2D_<uchar4> features, const DevMem2Di integral, float step, int subsetSize, DevMem2D_<int4> objects, float scale, int clWidth, int clHeight)
__global__ void lbp_classify_stump(Stage* stages, int nstages, ClNode* nodes, const float* leaves, const int* subsets, const uchar4* features,
const DevMem2Di integral, int workWidth, int workHeight, int clWidth, int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects)
{
unsigned int x = threadIdx.x * step;
unsigned int y = blockIdx.x * step;
int nodeOfs = 0, leafOfs = 0;
::cv::gpu::device::Feature evaluator;
int y = threadIdx.x * scale;
int x = blockIdx.x * scale;
for (int s = 0; s < stages.cols; s++ )
int i = 0;
int current_node = 0;
int current_leave = 0;
LBP evaluator;
for (int s = 0; s < nstages; s++ )
{
::cv::gpu::device::Stage stage = stages(0, s);
int sum = 0;
for (int w = 0; w < stage.ntrees; w++)
float sum = 0;
Stage stage = stages[s];
for (int t = 0; t < stage.ntrees; t++)
{
::cv::gpu::device::ClNode node = nodes(0, nodeOfs);
uchar4 feature = features(0, node.featureIdx);
ClNode node = nodes[current_node];
uchar4 feature = features[node.featureIdx];
int c = evaluator(y, x, feature, integral);
const int* subsetIdx = subsets + (current_node * subsetSize);
uchar c = evaluator(y, x, feature, integral);
const int subsetIdx = (nodeOfs * subsetSize);
int idx = subsetIdx + ((c >> 5) & ( 1 << (c & 31)) ? leafOfs : leafOfs + 1);
sum += leaves(0, subsets(0, idx) );
nodeOfs++;
leafOfs += 2;
int idx = (subsetIdx[c >> 5] & ( 1 << (c & 31))) ? current_leave : current_leave + 1;
sum += leaves[idx];
current_node += 1;
current_leave += 2;
}
i = s;
if (sum < stage.threshold)
return;
}
int4 rect;
rect.x = roundf(x * scale);
rect.y = roundf(y * scale);
rect.z = roundf(clWidth * scale);
rect.w = roundf(clHeight * scale);
objects(blockIdx.x, threadIdx.x) = rect;
rect.z = roundf(clWidth);
rect.w = roundf(clHeight);
if(i >= 19)
printf( "GPU detected [%d, %d] - [%d, %d]\n", rect.x, rect.y, rect.z, rect.w);
}
void cascadeClassify(const DevMem2Db bstages, const DevMem2Di trees, const DevMem2Db bnodes, const DevMem2Df leaves, const DevMem2Di subsets, const DevMem2Db bfeatures,
const DevMem2Di integral, int workWidth, int workHeight, int clWidth, int clHeight, float scale, int step, int subsetSize, DevMem2D_<int4> objects, int minNeighbors, cudaStream_t stream)
void classifyStump(const DevMem2Db mstages, const int nstages, const DevMem2Di mnodes, const DevMem2Df mleaves, const DevMem2Di msubsets, const DevMem2Db mfeatures,
const DevMem2Di integral, const int workWidth, const int workHeight, const int clWidth, const int clHeight, float scale, int step, int subsetSize,
DevMem2D_<int4> objects)
{
printf("CascadeClassify");
int blocks = ceilf(workHeight / (float)step);
int blocks = ceilf(workHeight / (float)step);
int threads = ceilf(workWidth / (float)step);
DevMem2D_< ::cv::gpu::device::Stage> stages = DevMem2D_< ::cv::gpu::device::Stage>(bstages);
DevMem2D_<uchar4> features = (DevMem2D_<uchar4>)bfeatures;
DevMem2D_< ::cv::gpu::device::ClNode> nodes = DevMem2D_< ::cv::gpu::device::ClNode>(bnodes);
printf("blocks %d, threads %d\n", blocks, threads);
Stage* stages = (Stage*)(mstages.ptr());
ClNode* nodes = (ClNode*)(mnodes.ptr());
const float* leaves = mleaves.ptr();
const int* subsets = msubsets.ptr();
const uchar4* features = (uchar4*)(mfeatures.ptr());
lbp_classify<<<blocks, threads>>>(stages, trees, nodes, leaves, subsets, features, integral, step, subsetSize, objects, scale, clWidth, clHeight);
lbp_classify_stump<<<blocks, threads>>>(stages, nstages, nodes, leaves, subsets, features, integral,
workWidth, workHeight, clWidth, clHeight, scale, step, subsetSize, objects);
}
}
}}}

@ -44,62 +44,58 @@
#define __OPENCV_GPU_DEVICE_LBP_HPP_
#include "internal_shared.hpp"
// #include "opencv2/gpu/device/border_interpolate.hpp"
// #include "opencv2/gpu/device/vec_traits.hpp"
// #include "opencv2/gpu/device/vec_math.hpp"
// #include "opencv2/gpu/device/saturate_cast.hpp"
// #include "opencv2/gpu/device/filters.hpp"
// #define CALC_SUM_(p0, p1, p2, p3, offset) \
// ((p0)[offset] - (p1)[offset] - (p2)[offset] + (p3)[offset])
// __device__ __forceinline__ int sum(p0, p1, p2, p3, offset)
// {
// }
namespace cv { namespace gpu { namespace device {
namespace lbp{
struct Stage
{
int first;
int ntrees;
float threshold;
__device__ __forceinline__ Stage(int f = 0, int n = 0, float t = 0.f) : first(f), ntrees(n), threshold(t) {}
__device__ __forceinline__ Stage(const Stage& other) : first(other.first), ntrees(other.ntrees), threshold(other.threshold) {}
};
struct ClNode
{
int featureIdx;
int left;
int right;
__device__ __forceinline__ ClNode(int f = 0, int l = 0, int r = 0) : featureIdx(f), left(l), right(r) {}
__device__ __forceinline__ ClNode(const ClNode& other) : featureIdx(other.featureIdx), left(other.left), right(other.right) {}
int featureIdx;
};
struct Feature
struct LBP
{
__device__ __forceinline__ Feature(const Feature& other) {(void)other;}
__device__ __forceinline__ Feature() {}
__device__ __forceinline__ LBP(const LBP& other) {(void)other;}
__device__ __forceinline__ LBP() {}
//feature as uchar x, y - left top, z,w - right bottom
__device__ __forceinline__ uchar operator() (unsigned int y, unsigned int x, uchar4 feature, const DevMem2Di integral) const
__device__ __forceinline__ int operator() (unsigned int y, unsigned int x, uchar4 feature, const DevMem2Di integral) const
{
int x_off = 2 * feature.z;
int y_off = 2 * feature.w;
// printf("feature: %d %d %d %d\n", (int)feature.x, (int)feature.y, (int)feature.z, (int)feature.w);
feature.z += feature.x;
feature.w += feature.y;
// load feature key points
int anchors[16];
/*
P0-----P1-----P2-----P3
| | | |
P4-----P5-----P6-----P7
| | | |
P8-----P9-----P10----P11
| | | |
P12----P13----P14----15
*/
anchors[0] = integral(y + feature.y, x + feature.x);
anchors[1] = integral(y + feature.y, x + feature.z);
anchors[2] = integral(y + feature.y, x + x_off + feature.x);
anchors[3] = integral(y + feature.y, x + x_off + feature.z);
anchors[2] = integral(y + feature.y, x + feature.x + x_off);
anchors[3] = integral(y + feature.y, x + feature.z + x_off);
anchors[4] = integral(y + feature.w, x + feature.x);
anchors[5] = integral(y + feature.w, x + feature.z);
anchors[6] = integral(y + feature.w, x + x_off + feature.x);
anchors[7] = integral(y + feature.w, x + x_off + feature.z);
anchors[6] = integral(y + feature.w, x + feature.x + x_off);
anchors[7] = integral(y + feature.w, x + feature.z + x_off);
anchors[8] = integral(y + y_off + feature.y, x + feature.x);
anchors[9] = integral(y + y_off + feature.y, x + feature.z);
@ -114,7 +110,7 @@ namespace cv { namespace gpu { namespace device {
// calculate feature
int sum = anchors[5] - anchors[6] - anchors[9] + anchors[10];
uchar response = (( (anchors[ 0] - anchors[ 1] - anchors[ 4] + anchors[ 5]) >= sum )? 128 : 0)
int response = (( (anchors[ 0] - anchors[ 1] - anchors[ 4] + anchors[ 5]) >= sum )? 128 : 0)
|(( (anchors[ 1] - anchors[ 2] - anchors[ 5] + anchors[ 6]) >= sum )? 64 : 0)
|(( (anchors[ 2] - anchors[ 3] - anchors[ 6] + anchors[ 7]) >= sum )? 32 : 0)
|(( (anchors[ 6] - anchors[ 7] - anchors[10] + anchors[11]) >= sum )? 16 : 0)
@ -122,11 +118,12 @@ namespace cv { namespace gpu { namespace device {
|(( (anchors[ 9] - anchors[10] - anchors[13] + anchors[14]) >= sum )? 4 : 0)
|(( (anchors[ 8] - anchors[ 9] - anchors[12] + anchors[13]) >= sum )? 2 : 0)
|(( (anchors[ 4] - anchors[ 5] - anchors[ 8] + anchors[ 9]) >= sum )? 1 : 0);
return response;
}
};
} // lbp
} } }// namespaces
#endif
Loading…
Cancel
Save