Merge pull request #9931 from mshabunin:bss-cleanup

pull/10018/head
Vadim Pisarevsky 7 years ago
commit a9b5233f67
  1. 4
      modules/core/include/opencv2/core/private.hpp
  2. 451
      modules/imgproc/src/color.cpp

@ -159,6 +159,10 @@ static inline cv::Size cvGetMatSize( const CvMat* mat )
namespace cv
{
CV_EXPORTS void scalarToRawData(const cv::Scalar& s, void* buf, int type, int unroll_to = 0);
//! Allocate all memory buffers which will not be freed, ease filtering memcheck issues
template <typename T>
CV_EXPORTS T* allocSingleton(size_t count) { return static_cast<T*>(fastMalloc(sizeof(T) * count)); }
}
// property implementation macros

@ -140,48 +140,24 @@ const int CB2GI = -5636;
const int CR2GI = -11698;
const int CR2RI = 22987;
// computes cubic spline coefficients for a function: (xi=i, yi=f[i]), i=0..n
template<typename _Tp> static void splineBuild(const _Tp* f, int n, _Tp* tab)
{
_Tp cn = 0;
int i;
tab[0] = tab[1] = (_Tp)0;
for(i = 1; i < n-1; i++)
{
_Tp t = 3*(f[i+1] - 2*f[i] + f[i-1]);
_Tp l = 1/(4 - tab[(i-1)*4]);
tab[i*4] = l; tab[i*4+1] = (t - tab[(i-1)*4+1])*l;
}
for(i = n-1; i >= 0; i--)
{
_Tp c = tab[i*4+1] - tab[i*4]*cn;
_Tp b = f[i+1] - f[i] - (cn + c*2)*(_Tp)0.3333333333333333;
_Tp d = (cn - c)*(_Tp)0.3333333333333333;
tab[i*4] = f[i]; tab[i*4+1] = b;
tab[i*4+2] = c; tab[i*4+3] = d;
cn = c;
}
}
static void splineBuild(const softfloat* f, int n, float* tab)
static const float * splineBuild(const softfloat* f, size_t n)
{
float* tab = cv::allocSingleton<float>(n * 4);
const softfloat f2(2), f3(3), f4(4);
softfloat cn(0);
softfloat* sftab = reinterpret_cast<softfloat*>(tab);
int i;
tab[0] = tab[1] = 0.0f;
for(i = 1; i < n-1; i++)
for(size_t i = 1; i < n; i++)
{
softfloat t = (f[i+1] - f[i]*f2 + f[i-1])*f3;
softfloat l = softfloat::one()/(f4 - sftab[(i-1)*4]);
sftab[i*4] = l; sftab[i*4+1] = (t - sftab[(i-1)*4+1])*l;
}
for(i = n-1; i >= 0; i--)
for(size_t j = 0; j < n; ++j)
{
size_t i = n - j - 1;
softfloat c = sftab[i*4+1] - sftab[i*4]*cn;
softfloat b = f[i+1] - f[i] - (cn + c*f2)/f3;
softfloat d = (cn - c)/f3;
@ -189,8 +165,10 @@ static void splineBuild(const softfloat* f, int n, float* tab)
sftab[i*4+2] = c; sftab[i*4+3] = d;
cn = c;
}
return tab;
}
// interpolates value of a function at x, 0 <= x <= n using a cubic spline.
template<typename _Tp> static inline _Tp splineInterpolate(_Tp x, const _Tp* tab, int n)
{
@ -5845,10 +5823,11 @@ static const softdouble D65[] = {softdouble::fromRaw(0x3fee6a22b3892ee8),
softdouble::fromRaw(0x3ff16b8950763a19)};
enum { LAB_CBRT_TAB_SIZE = 1024, GAMMA_TAB_SIZE = 1024 };
static float LabCbrtTab[LAB_CBRT_TAB_SIZE*4];
static const float *LabCbrtTab = 0;
static const float LabCbrtTabScale = softfloat(LAB_CBRT_TAB_SIZE*2)/softfloat(3);
static float sRGBGammaTab[GAMMA_TAB_SIZE*4], sRGBInvGammaTab[GAMMA_TAB_SIZE*4];
static const float *sRGBGammaTab = 0;
static const float *sRGBInvGammaTab = 0;
static const float GammaTabScale((int)GAMMA_TAB_SIZE);
static ushort sRGBGammaTab_b[256], linearGammaTab_b[256];
@ -5873,21 +5852,27 @@ enum
trilinear_shift = 8 - lab_lut_shift + 1,
TRILINEAR_BASE = (1 << trilinear_shift)
};
static int16_t RGB2LabLUT_s16[LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3*8];
static int16_t trilinearLUT[TRILINEAR_BASE*TRILINEAR_BASE*TRILINEAR_BASE*8];
static ushort LabToYF_b[256*2];
static const int minABvalue = -8145;
static int abToXZ_b[LAB_BASE*9/4];
static const int *abToXZ_b;
// Luv constants
static const bool enableRGB2LuvInterpolation = true;
static const bool enablePackedRGB2Luv = true;
static const bool enablePackedLuv2RGB = true;
static int16_t RGB2LuvLUT_s16[LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3*8];
static const softfloat uLow(-134), uHigh(220), uRange(uHigh-uLow);
static const softfloat vLow(-140), vHigh(122), vRange(vHigh-vLow);
static int LuToUp_b[256*256];
static int LvToVp_b[256*256];
static long long int LvToVpl_b[256*256];
static struct LABLUVLUT_s16_t {
const int16_t *RGB2LabLUT_s16;
const int16_t *RGB2LuvLUT_s16;
} LABLUVLUTs16 = {0, 0};
static struct LUVLUT_T {
const int *LuToUp_b;
const int *LvToVp_b;
const long long int *LvToVpl_b;
} LUVLUT = {0, 0, 0};
#define clip(value) \
value < 0.0f ? 0.0f : value > 1.0f ? 1.0f : value;
@ -5899,6 +5884,12 @@ static const softdouble gammaLowScale = softdouble(323)/softdouble(25);
static const softdouble gammaPower = softdouble(12)/softdouble(5); // 2.4
static const softdouble gammaXshift = softdouble(11)/softdouble(200); // 0.055
static const softfloat lthresh = softfloat(216) / softfloat(24389); // 0.008856f = (6/29)^3
static const softfloat lscale = softfloat(841) / softfloat(108); // 7.787f = (29/3)^3/(29*4)
static const softfloat lbias = softfloat(16) / softfloat(116);
static const softfloat f255(255);
static inline softfloat applyGamma(softfloat x)
{
//return x <= 0.04045f ? x*(1.f/12.92f) : (float)std::pow((double)(x + 0.055)*(1./1.055), 2.4);
@ -5917,16 +5908,192 @@ static inline softfloat applyInvGamma(softfloat x)
pow(xd, softdouble::one()/gammaPower)*(softdouble::one()+gammaXshift) - gammaXshift);
}
static LUVLUT_T initLUTforLUV(int BASE, const softfloat &un, const softfloat &vn)
{
const softfloat oneof4 = softfloat::one()/softfloat(4);
int *LuToUp_b = cv::allocSingleton<int>(256*256);
int *LvToVp_b = cv::allocSingleton<int>(256*256);
long long int *LvToVpl_b = cv::allocSingleton<long long int>(256*256);
for(int LL = 0; LL < 256; LL++)
{
softfloat L = softfloat(LL*100)/f255;
for(int uu = 0; uu < 256; uu++)
{
softfloat u = softfloat(uu)*uRange/f255 + uLow;
softfloat up = softfloat(9)*(u + L*un);
LuToUp_b[LL*256+uu] = cvRound(up*softfloat(BASE/1024));//1024 is OK, 2048 gave maxerr 3
}
for(int vv = 0; vv < 256; vv++)
{
softfloat v = softfloat(vv)*vRange/f255 + vLow;
softfloat vp = oneof4/(v + L*vn);
if(vp > oneof4) vp = oneof4;
if(vp < -oneof4) vp = -oneof4;
int ivp = cvRound(vp*softfloat(BASE*1024));
LvToVp_b[LL*256+vv] = ivp;
int vpl = ivp*LL;
LvToVpl_b[LL*256+vv] = (12*13*100*(BASE/1024))*(long long)vpl;
}
}
LUVLUT_T res;
res.LuToUp_b = LuToUp_b;
res.LvToVp_b = LvToVp_b;
res.LvToVpl_b = LvToVpl_b;
return res;
}
static int * initLUTforABXZ(int BASE)
{
int * res = cv::allocSingleton<int>(LAB_BASE*9/4);
for(int i = minABvalue; i < LAB_BASE*9/4+minABvalue; i++)
{
int v;
//6.f/29.f*BASE = 3389.730
if(i <= 3390)
{
//fxz[k] = (fxz[k] - 16.0f / 116.0f) / 7.787f;
// 7.787f = (29/3)^3/(29*4)
v = i*108/841 - BASE*16/116*108/841;
}
else
{
//fxz[k] = fxz[k] * fxz[k] * fxz[k];
v = i*i/BASE*i/BASE;
}
res[i-minABvalue] = v; // -1335 <= v <= 88231
}
return res;
}
inline void fill_one(int16_t *LAB, const int16_t *LAB_prev, int16_t *LUV, const int16_t *LUV_prev, int p, int q, int r, int _p, int _q, int _r)
{
do {
int idxold = 0;
idxold += min(p+(_p), (int)(LAB_LUT_DIM-1))*3;
idxold += min(q+(_q), (int)(LAB_LUT_DIM-1))*LAB_LUT_DIM*3;
idxold += min(r+(_r), (int)(LAB_LUT_DIM-1))*LAB_LUT_DIM*LAB_LUT_DIM*3;
int idxnew = p*3*8 + q*LAB_LUT_DIM*3*8 + r*LAB_LUT_DIM*LAB_LUT_DIM*3*8+4*(_p)+2*(_q)+(_r);
LAB[idxnew] = LAB_prev[idxold];
LAB[idxnew+8] = LAB_prev[idxold+1];
LAB[idxnew+16] = LAB_prev[idxold+2];
LUV[idxnew] = LUV_prev[idxold];
LUV[idxnew+8] = LUV_prev[idxold+1];
LUV[idxnew+16] = LUV_prev[idxold+2];
} while(0);
}
static LABLUVLUT_s16_t initLUTforLABLUVs16(const softfloat & un, const softfloat & vn)
{
int i;
softfloat scaledCoeffs[9], coeffs[9];
//RGB2Lab coeffs
softdouble scaleWhite[] = { softdouble::one()/D65[0],
softdouble::one(),
softdouble::one()/D65[2] };
for(i = 0; i < 3; i++ )
{
coeffs[i*3+2] = sRGB2XYZ_D65[i*3+0];
coeffs[i*3+1] = sRGB2XYZ_D65[i*3+1];
coeffs[i*3+0] = sRGB2XYZ_D65[i*3+2];
scaledCoeffs[i*3+0] = sRGB2XYZ_D65[i*3+2] * scaleWhite[i];
scaledCoeffs[i*3+1] = sRGB2XYZ_D65[i*3+1] * scaleWhite[i];
scaledCoeffs[i*3+2] = sRGB2XYZ_D65[i*3+0] * scaleWhite[i];
}
softfloat S0 = scaledCoeffs[0], S1 = scaledCoeffs[1], S2 = scaledCoeffs[2],
S3 = scaledCoeffs[3], S4 = scaledCoeffs[4], S5 = scaledCoeffs[5],
S6 = scaledCoeffs[6], S7 = scaledCoeffs[7], S8 = scaledCoeffs[8];
softfloat C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
//u, v: [-134.0, 220.0], [-140.0, 122.0]
static const softfloat lld(LAB_LUT_DIM - 1), f116(116), f16(16), f500(500), f200(200);
static const softfloat f100(100), f128(128), f256(256), lbase((int)LAB_BASE);
//903.3f = (29/3)^3
static const softfloat f9033 = softfloat(29*29*29)/softfloat(27);
static const softfloat f9of4 = softfloat(9)/softfloat(4);
static const softfloat f15(15), f3(3);
AutoBuffer<int16_t> RGB2Labprev(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3);
AutoBuffer<int16_t> RGB2Luvprev(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3);
for(int p = 0; p < LAB_LUT_DIM; p++)
{
for(int q = 0; q < LAB_LUT_DIM; q++)
{
for(int r = 0; r < LAB_LUT_DIM; r++)
{
int idx = p*3 + q*LAB_LUT_DIM*3 + r*LAB_LUT_DIM*LAB_LUT_DIM*3;
softfloat R = softfloat(p)/lld;
softfloat G = softfloat(q)/lld;
softfloat B = softfloat(r)/lld;
R = applyGamma(R);
G = applyGamma(G);
B = applyGamma(B);
//RGB 2 Lab LUT building
{
softfloat X = R*S0 + G*S1 + B*S2;
softfloat Y = R*S3 + G*S4 + B*S5;
softfloat Z = R*S6 + G*S7 + B*S8;
softfloat FX = X > lthresh ? cbrt(X) : mulAdd(X, lscale, lbias);
softfloat FY = Y > lthresh ? cbrt(Y) : mulAdd(Y, lscale, lbias);
softfloat FZ = Z > lthresh ? cbrt(Z) : mulAdd(Z, lscale, lbias);
softfloat L = Y > lthresh ? (f116*FY - f16) : (f9033*Y);
softfloat a = f500 * (FX - FY);
softfloat b = f200 * (FY - FZ);
RGB2Labprev[idx] = (int16_t)(cvRound(lbase*L/f100));
RGB2Labprev[idx+1] = (int16_t)(cvRound(lbase*(a + f128)/f256));
RGB2Labprev[idx+2] = (int16_t)(cvRound(lbase*(b + f128)/f256));
}
//RGB 2 Luv LUT building
{
softfloat X = R*C0 + G*C1 + B*C2;
softfloat Y = R*C3 + G*C4 + B*C5;
softfloat Z = R*C6 + G*C7 + B*C8;
softfloat L = Y < lthresh ? mulAdd(Y, lscale, lbias) : cbrt(Y);
L = L*f116 - f16;
softfloat d = softfloat(4*13)/max(X + f15 * Y + f3 * Z, softfloat(FLT_EPSILON));
softfloat u = L*(X*d - un);
softfloat v = L*(f9of4*Y*d - vn);
RGB2Luvprev[idx ] = (int16_t)cvRound(lbase*L/f100);
RGB2Luvprev[idx+1] = (int16_t)cvRound(lbase*(u-uLow)/uRange);
RGB2Luvprev[idx+2] = (int16_t)cvRound(lbase*(v-vLow)/vRange);
}
}
}
}
int16_t *RGB2LabLUT_s16 = cv::allocSingleton<int16_t>(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3*8);
int16_t *RGB2LuvLUT_s16 = cv::allocSingleton<int16_t>(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3*8);
for(int p = 0; p < LAB_LUT_DIM; p++)
for(int q = 0; q < LAB_LUT_DIM; q++)
for(int r = 0; r < LAB_LUT_DIM; r++)
for (int p_ = 0; p_ < 2; ++p_)
for (int q_ = 0; q_ < 2; ++q_)
for (int r_ = 0; r_ < 2; ++r_)
fill_one(RGB2LabLUT_s16, RGB2Labprev, RGB2LuvLUT_s16, RGB2Luvprev, p, q, r, p_, q_, r_);
LABLUVLUT_s16_t res;
res.RGB2LabLUT_s16 = RGB2LabLUT_s16;
res.RGB2LuvLUT_s16 = RGB2LuvLUT_s16;
return res;
}
static void initLabTabs()
{
static bool initialized = false;
if(!initialized)
{
static const softfloat lthresh = softfloat(216) / softfloat(24389); // 0.008856f = (6/29)^3
static const softfloat lscale = softfloat(841) / softfloat(108); // 7.787f = (29/3)^3/(29*4)
static const softfloat lbias = softfloat(16) / softfloat(116);
static const softfloat f255(255);
softfloat f[LAB_CBRT_TAB_SIZE+1], g[GAMMA_TAB_SIZE+1], ig[GAMMA_TAB_SIZE+1];
softfloat scale = softfloat::one()/softfloat(LabCbrtTabScale);
int i;
@ -5935,7 +6102,7 @@ static void initLabTabs()
softfloat x = scale*softfloat(i);
f[i] = x < lthresh ? mulAdd(x, lscale, lbias) : cbrt(x);
}
splineBuild(f, LAB_CBRT_TAB_SIZE, LabCbrtTab);
LabCbrtTab = splineBuild(f, LAB_CBRT_TAB_SIZE);
scale = softfloat::one()/softfloat(GammaTabScale);
for(i = 0; i <= GAMMA_TAB_SIZE; i++)
@ -5944,8 +6111,9 @@ static void initLabTabs()
g[i] = applyGamma(x);
ig[i] = applyInvGamma(x);
}
splineBuild(g, GAMMA_TAB_SIZE, sRGBGammaTab);
splineBuild(ig, GAMMA_TAB_SIZE, sRGBInvGammaTab);
sRGBGammaTab = splineBuild(g, GAMMA_TAB_SIZE);
sRGBInvGammaTab = splineBuild(ig, GAMMA_TAB_SIZE);
static const softfloat intScale(255*(1 << gamma_shift));
for(i = 0; i < 256; i++)
@ -5999,29 +6167,12 @@ static void initLabTabs()
}
//Lookup table for a,b to x,z conversion
for(i = minABvalue; i < LAB_BASE*9/4+minABvalue; i++)
{
int v;
//6.f/29.f*BASE = 3389.730
if(i <= 3390)
{
//fxz[k] = (fxz[k] - 16.0f / 116.0f) / 7.787f;
// 7.787f = (29/3)^3/(29*4)
v = i*108/841 - BASE*16/116*108/841;
}
else
{
//fxz[k] = fxz[k] * fxz[k] * fxz[k];
v = i*i/BASE*i/BASE;
}
abToXZ_b[i-minABvalue] = v; // -1335 <= v <= 88231
}
abToXZ_b = initLUTforABXZ(BASE);
softfloat dd = D65[0] + D65[1]*softdouble(15) + D65[2]*softdouble(3);
dd = softfloat::one()/max(dd, softfloat::eps());
softfloat un = dd*softfloat(13*4)*D65[0];
softfloat vn = dd*softfloat(13*9)*D65[1];
softfloat oneof4 = softfloat::one()/softfloat(4);
//when XYZ are limited to [0, 2]
/*
@ -6032,149 +6183,14 @@ static void initLabTabs()
*/
//Luv LUT
for(int LL = 0; LL < 256; LL++)
{
softfloat L = softfloat(LL*100)/f255;
for(int uu = 0; uu < 256; uu++)
{
softfloat u = softfloat(uu)*uRange/f255 + uLow;
softfloat up = softfloat(9)*(u + L*un);
LuToUp_b[LL*256+uu] = cvRound(up*softfloat(BASE/1024));//1024 is OK, 2048 gave maxerr 3
}
for(int vv = 0; vv < 256; vv++)
{
softfloat v = softfloat(vv)*vRange/f255 + vLow;
softfloat vp = oneof4/(v + L*vn);
if(vp > oneof4) vp = oneof4;
if(vp < -oneof4) vp = -oneof4;
int ivp = cvRound(vp*softfloat(BASE*1024));
LvToVp_b[LL*256+vv] = ivp;
int vpl = ivp*LL;
LvToVpl_b[LL*256+vv] = (12*13*100*(BASE/1024))*(long long)vpl;
}
}
LUVLUT = initLUTforLUV(BASE, un, vn);
//try to suppress warning
static const bool calcLUT = enableRGB2LabInterpolation || enableRGB2LuvInterpolation;
if(calcLUT)
{
softfloat scaledCoeffs[9], coeffs[9];
//RGB2Lab coeffs
softdouble scaleWhite[] = { softdouble::one()/D65[0],
softdouble::one(),
softdouble::one()/D65[2] };
for(i = 0; i < 3; i++ )
{
coeffs[i*3+2] = sRGB2XYZ_D65[i*3+0];
coeffs[i*3+1] = sRGB2XYZ_D65[i*3+1];
coeffs[i*3+0] = sRGB2XYZ_D65[i*3+2];
scaledCoeffs[i*3+0] = sRGB2XYZ_D65[i*3+2] * scaleWhite[i];
scaledCoeffs[i*3+1] = sRGB2XYZ_D65[i*3+1] * scaleWhite[i];
scaledCoeffs[i*3+2] = sRGB2XYZ_D65[i*3+0] * scaleWhite[i];
}
softfloat S0 = scaledCoeffs[0], S1 = scaledCoeffs[1], S2 = scaledCoeffs[2],
S3 = scaledCoeffs[3], S4 = scaledCoeffs[4], S5 = scaledCoeffs[5],
S6 = scaledCoeffs[6], S7 = scaledCoeffs[7], S8 = scaledCoeffs[8];
softfloat C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2],
C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5],
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
//u, v: [-134.0, 220.0], [-140.0, 122.0]
static const softfloat lld(LAB_LUT_DIM - 1), f116(116), f16(16), f500(500), f200(200);
static const softfloat f100(100), f128(128), f256(256), lbase((int)LAB_BASE);
//903.3f = (29/3)^3
static const softfloat f9033 = softfloat(29*29*29)/softfloat(27);
static const softfloat f9of4 = softfloat(9)/softfloat(4);
static const softfloat f15(15), f3(3);
AutoBuffer<int16_t> RGB2Labprev(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3);
AutoBuffer<int16_t> RGB2Luvprev(LAB_LUT_DIM*LAB_LUT_DIM*LAB_LUT_DIM*3);
for(int p = 0; p < LAB_LUT_DIM; p++)
{
for(int q = 0; q < LAB_LUT_DIM; q++)
{
for(int r = 0; r < LAB_LUT_DIM; r++)
{
int idx = p*3 + q*LAB_LUT_DIM*3 + r*LAB_LUT_DIM*LAB_LUT_DIM*3;
softfloat R = softfloat(p)/lld;
softfloat G = softfloat(q)/lld;
softfloat B = softfloat(r)/lld;
R = applyGamma(R);
G = applyGamma(G);
B = applyGamma(B);
//RGB 2 Lab LUT building
{
softfloat X = R*S0 + G*S1 + B*S2;
softfloat Y = R*S3 + G*S4 + B*S5;
softfloat Z = R*S6 + G*S7 + B*S8;
softfloat FX = X > lthresh ? cbrt(X) : mulAdd(X, lscale, lbias);
softfloat FY = Y > lthresh ? cbrt(Y) : mulAdd(Y, lscale, lbias);
softfloat FZ = Z > lthresh ? cbrt(Z) : mulAdd(Z, lscale, lbias);
softfloat L = Y > lthresh ? (f116*FY - f16) : (f9033*Y);
softfloat a = f500 * (FX - FY);
softfloat b = f200 * (FY - FZ);
RGB2Labprev[idx] = (int16_t)(cvRound(lbase*L/f100));
RGB2Labprev[idx+1] = (int16_t)(cvRound(lbase*(a + f128)/f256));
RGB2Labprev[idx+2] = (int16_t)(cvRound(lbase*(b + f128)/f256));
}
//RGB 2 Luv LUT building
{
softfloat X = R*C0 + G*C1 + B*C2;
softfloat Y = R*C3 + G*C4 + B*C5;
softfloat Z = R*C6 + G*C7 + B*C8;
softfloat L = Y < lthresh ? mulAdd(Y, lscale, lbias) : cbrt(Y);
L = L*f116 - f16;
softfloat d = softfloat(4*13)/max(X + f15 * Y + f3 * Z, softfloat(FLT_EPSILON));
softfloat u = L*(X*d - un);
softfloat v = L*(f9of4*Y*d - vn);
RGB2Luvprev[idx ] = (int16_t)cvRound(lbase*L/f100);
RGB2Luvprev[idx+1] = (int16_t)cvRound(lbase*(u-uLow)/uRange);
RGB2Luvprev[idx+2] = (int16_t)cvRound(lbase*(v-vLow)/vRange);
}
}
}
}
for(int p = 0; p < LAB_LUT_DIM; p++)
{
for(int q = 0; q < LAB_LUT_DIM; q++)
{
for(int r = 0; r < LAB_LUT_DIM; r++)
{
#define FILL(_p, _q, _r) \
do {\
int idxold = 0;\
idxold += min(p+(_p), (int)(LAB_LUT_DIM-1))*3;\
idxold += min(q+(_q), (int)(LAB_LUT_DIM-1))*LAB_LUT_DIM*3;\
idxold += min(r+(_r), (int)(LAB_LUT_DIM-1))*LAB_LUT_DIM*LAB_LUT_DIM*3;\
int idxnew = p*3*8 + q*LAB_LUT_DIM*3*8 + r*LAB_LUT_DIM*LAB_LUT_DIM*3*8+4*(_p)+2*(_q)+(_r);\
RGB2LabLUT_s16[idxnew] = RGB2Labprev[idxold];\
RGB2LabLUT_s16[idxnew+8] = RGB2Labprev[idxold+1];\
RGB2LabLUT_s16[idxnew+16] = RGB2Labprev[idxold+2];\
RGB2LuvLUT_s16[idxnew] = RGB2Luvprev[idxold];\
RGB2LuvLUT_s16[idxnew+8] = RGB2Luvprev[idxold+1];\
RGB2LuvLUT_s16[idxnew+16] = RGB2Luvprev[idxold+2];\
} while(0)
FILL(0, 0, 0); FILL(0, 0, 1);
FILL(0, 1, 0); FILL(0, 1, 1);
FILL(1, 0, 0); FILL(1, 0, 1);
FILL(1, 1, 0); FILL(1, 1, 1);
#undef FILL
}
}
}
LABLUVLUTs16 = initLUTforLABLUVs16(un, vn);
for(int16_t p = 0; p < TRILINEAR_BASE; p++)
{
@ -6199,7 +6215,7 @@ static void initLabTabs()
// cx, cy, cz are in [0; LAB_BASE]
static inline void trilinearInterpolate(int cx, int cy, int cz, int16_t* LUT,
static inline void trilinearInterpolate(int cx, int cy, int cz, const int16_t* LUT,
int& a, int& b, int& c)
{
//LUT idx of origin pt of cube
@ -6207,7 +6223,7 @@ static inline void trilinearInterpolate(int cx, int cy, int cz, int16_t* LUT,
int ty = cy >> (lab_base_shift - lab_lut_shift);
int tz = cz >> (lab_base_shift - lab_lut_shift);
int16_t* baseLUT = &LUT[3*8*tx + (3*8*LAB_LUT_DIM)*ty + (3*8*LAB_LUT_DIM*LAB_LUT_DIM)*tz];
const int16_t* baseLUT = &LUT[3*8*tx + (3*8*LAB_LUT_DIM)*ty + (3*8*LAB_LUT_DIM*LAB_LUT_DIM)*tz];
int aa[8], bb[8], cc[8];
for(int i = 0; i < 8; i++)
{
@ -6500,7 +6516,7 @@ struct RGB2Lab_f
v_uint16x8 uibvec = v_reinterpret_as_u16(ibvec);
v_uint16x8 ui_lvec, ui_avec, ui_bvec;
trilinearPackedInterpolate(uirvec, uigvec, uibvec, RGB2LabLUT_s16, ui_lvec, ui_avec, ui_bvec);
trilinearPackedInterpolate(uirvec, uigvec, uibvec, LABLUVLUTs16.RGB2LabLUT_s16, ui_lvec, ui_avec, ui_bvec);
v_int16x8 i_lvec = v_reinterpret_as_s16(ui_lvec);
v_int16x8 i_avec = v_reinterpret_as_s16(ui_avec);
v_int16x8 i_bvec = v_reinterpret_as_s16(ui_bvec);
@ -6541,7 +6557,7 @@ struct RGB2Lab_f
int iR = cvRound(R*LAB_BASE), iG = cvRound(G*LAB_BASE), iB = cvRound(B*LAB_BASE);
int iL, ia, ib;
trilinearInterpolate(iR, iG, iB, RGB2LabLUT_s16, iL, ia, ib);
trilinearInterpolate(iR, iG, iB, LABLUVLUTs16.RGB2LabLUT_s16, iL, ia, ib);
float L = iL*1.0f/LAB_BASE, a = ia*1.0f/LAB_BASE, b = ib*1.0f/LAB_BASE;
dst[i] = L*100.0f;
@ -8121,8 +8137,8 @@ struct RGB2Luvinterpolate
trilinearInterpolate(R, G, B, RGB2LuvLUT_s16, L, u, v);
*/
v_uint16x8 l80, u80, v80, l81, u81, v81;
trilinearPackedInterpolate(r80, g80, b80, RGB2LuvLUT_s16, l80, u80, v80);
trilinearPackedInterpolate(r81, g81, b81, RGB2LuvLUT_s16, l81, u81, v81);
trilinearPackedInterpolate(r80, g80, b80, LABLUVLUTs16.RGB2LuvLUT_s16, l80, u80, v80);
trilinearPackedInterpolate(r81, g81, b81, LABLUVLUTs16.RGB2LuvLUT_s16, l81, u81, v81);
/*
dst[i] = saturate_cast<uchar>(L/baseDiv);
@ -8148,7 +8164,7 @@ struct RGB2Luvinterpolate
R = R*baseDiv, G = G*baseDiv, B = B*baseDiv;
int L, u, v;
trilinearInterpolate(R, G, B, RGB2LuvLUT_s16, L, u, v);
trilinearInterpolate(R, G, B, LABLUVLUTs16.RGB2LuvLUT_s16, L, u, v);
dst[i] = saturate_cast<uchar>(L/baseDiv);
dst[i+1] = saturate_cast<uchar>(u/baseDiv);
@ -8176,7 +8192,6 @@ struct RGB2Luv_b
&& enableBitExactness
&& enableRGB2LuvInterpolation);
static const softfloat f255(255);
#if CV_NEON
v_scale_inv = vdupq_n_f32(softfloat::one()/f255);
v_scale = vdupq_n_f32(f255/softfloat(100));
@ -8229,7 +8244,6 @@ struct RGB2Luv_b
int i, j, scn = srccn;
float CV_DECL_ALIGNED(16) buf[3*BLOCK_SIZE];
static const softfloat f255(255);
#if CV_SSE2
__m128 v_coeffs = _mm_set_ps(f255/softfloat(100), f255/vRange, f255/uRange, f255/softfloat(100));
__m128 v_res = _mm_set_ps(0.f, -vLow*f255/vRange, -uLow*f255/uRange, 0.f);
@ -8425,8 +8439,8 @@ struct Luv2RGBinteger
// y : [0, BASE]
// up: [-402, 1431.57]*(BASE/1024)
// vp: +/- 0.25*BASE*1024
int up = LuToUp_b[LL*256+uu];
int vp = LvToVp_b[LL*256+vv];
int up = LUVLUT.LuToUp_b[LL*256+uu];
int vp = LUVLUT.LvToVp_b[LL*256+vv];
//X = y*3.f* up/((float)BASE/1024) *vp/((float)BASE*1024);
//Z = y*(((12.f*13.f)*((float)LL)*100.f/255.f - up/((float)BASE))*vp/((float)BASE*1024) - 5.f);
@ -8434,7 +8448,7 @@ struct Luv2RGBinteger
int x = (int)(xv/BASE);
x = y*x/BASE;
long long int vpl = LvToVpl_b[LL*256+vv];
long long int vpl = LUVLUT.LvToVpl_b[LL*256+vv];
long long int zp = vpl - xv*(255/3);
zp /= BASE;
long long int zq = zp - (long long)(5*255*BASE);
@ -8474,11 +8488,11 @@ struct Luv2RGBinteger
int v = vvstore[i];
int y = LabToYF_b[LL*2];
int up = LuToUp_b[LL*256+u];
int vp = LvToVp_b[LL*256+v];
int up = LUVLUT.LuToUp_b[LL*256+u];
int vp = LUVLUT.LvToVp_b[LL*256+v];
long long int xv = up*(long long int)vp;
long long int vpl = LvToVpl_b[LL*256+v];
long long int vpl = LUVLUT.LvToVpl_b[LL*256+v];
long long int zp = vpl - xv*(255/3);
zp = zp >> base_shift;
long long int zq = zp - (5*255*BASE);
@ -8619,7 +8633,6 @@ struct Luv2RGB_b
uchar alpha = ColorChannel<uchar>::max();
float CV_DECL_ALIGNED(16) buf[3*BLOCK_SIZE];
static const softfloat f255(255);
static const softfloat fl = softfloat(100)/f255;
static const softfloat fu = uRange/f255;
static const softfloat fv = vRange/f255;
@ -9842,9 +9855,9 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
static UMat usRGBGammaTab, ucoeffs, uLabCbrtTab;
if (srgb && usRGBGammaTab.empty())
Mat(1, GAMMA_TAB_SIZE * 4, CV_32FC1, sRGBGammaTab).copyTo(usRGBGammaTab);
Mat(1, GAMMA_TAB_SIZE * 4, CV_32FC1, const_cast<float*>(sRGBGammaTab)).copyTo(usRGBGammaTab);
if (!lab && uLabCbrtTab.empty())
Mat(1, LAB_CBRT_TAB_SIZE * 4, CV_32FC1, LabCbrtTab).copyTo(uLabCbrtTab);
Mat(1, LAB_CBRT_TAB_SIZE * 4, CV_32FC1, const_cast<float*>(LabCbrtTab)).copyTo(uLabCbrtTab);
{
float coeffs[9];
@ -9930,7 +9943,7 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
static UMat ucoeffs, usRGBInvGammaTab;
if (srgb && usRGBInvGammaTab.empty())
Mat(1, GAMMA_TAB_SIZE*4, CV_32FC1, sRGBInvGammaTab).copyTo(usRGBInvGammaTab);
Mat(1, GAMMA_TAB_SIZE*4, CV_32FC1, const_cast<float*>(sRGBInvGammaTab)).copyTo(usRGBInvGammaTab);
{
float coeffs[9];

Loading…
Cancel
Save