Merge pull request #20957 from sturkmen72:update-documentation

Update documentation

* Update DNN-based Face Detection And Recognition tutorial

* samples(dnn/face): update face_detect.cpp

* final changes

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
pull/21165/head
Suleyman TURKMEN 3 years ago committed by GitHub
parent b594ed99b8
commit a97f21ba4e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 67
      doc/tutorials/dnn/dnn_face/dnn_face.markdown
  2. 255
      samples/dnn/face_detect.cpp
  3. 126
      samples/dnn/face_detect.py
  4. 103
      samples/dnn/face_match.cpp
  5. 57
      samples/dnn/face_match.py

@ -36,14 +36,34 @@ There are two models (ONNX format) pre-trained and required for this module:
### DNNFaceDetector
```cpp
// Initialize FaceDetectorYN
Ptr<FaceDetectorYN> faceDetector = FaceDetectorYN::create(onnx_path, "", image.size(), score_thresh, nms_thresh, top_k);
@add_toggle_cpp
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/dnn/face_detect.cpp)
// Forward
Mat faces;
faceDetector->detect(image, faces);
```
- **Code at glance:**
@include samples/dnn/face_detect.cpp
@end_toggle
@add_toggle_python
- **Downloadable code**: Click
[here](https://github.com/opencv/opencv/tree/master/samples/dnn/face_detect.py)
- **Code at glance:**
@include samples/dnn/face_detect.py
@end_toggle
Explanation
-----------
@add_toggle_cpp
@snippet dnn/face_detect.cpp initialize_FaceDetectorYN
@snippet dnn/face_detect.cpp inference
@end_toggle
@add_toggle_python
@snippet dnn/face_detect.py initialize_FaceDetectorYN
@snippet dnn/face_detect.py inference
@end_toggle
The detection output `faces` is a two-dimension array of type CV_32F, whose rows are the detected face instances, columns are the location of a face and 5 facial landmarks. The format of each row is as follows:
@ -57,28 +77,25 @@ x1, y1, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm
Following Face Detection, run codes below to extract face feature from facial image.
```cpp
// Initialize FaceRecognizerSF with model path (cv::String)
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(model_path, "");
// Aligning and cropping facial image through the first face of faces detected by dnn_face::DNNFaceDetector
Mat aligned_face;
faceRecognizer->alignCrop(image, faces.row(0), aligned_face);
@add_toggle_cpp
@snippet dnn/face_detect.cpp initialize_FaceRecognizerSF
@snippet dnn/face_detect.cpp facerecognizer
@end_toggle
// Run feature extraction with given aligned_face (cv::Mat)
Mat feature;
faceRecognizer->feature(aligned_face, feature);
feature = feature.clone();
```
@add_toggle_python
@snippet dnn/face_detect.py initialize_FaceRecognizerSF
@snippet dnn/face_detect.py facerecognizer
@end_toggle
After obtaining face features *feature1* and *feature2* of two facial images, run codes below to calculate the identity discrepancy between the two faces.
```cpp
// Calculating the discrepancy between two face features by using cosine distance.
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizer::DisType::COSINE);
// Calculating the discrepancy between two face features by using normL2 distance.
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizer::DisType::NORM_L2);
```
@add_toggle_cpp
@snippet dnn/face_detect.cpp match
@end_toggle
@add_toggle_python
@snippet dnn/face_detect.py match
@end_toggle
For example, two faces have same identity if the cosine distance is greater than or equal to 0.363, or the normL2 distance is less than or equal to 1.128.

@ -8,125 +8,272 @@
using namespace cv;
using namespace std;
static Mat visualize(Mat input, Mat faces, int thickness=2)
static
void visualize(Mat& input, int frame, Mat& faces, double fps, int thickness = 2)
{
Mat output = input.clone();
std::string fpsString = cv::format("FPS : %.2f", (float)fps);
if (frame >= 0)
cout << "Frame " << frame << ", ";
cout << "FPS: " << fpsString << endl;
for (int i = 0; i < faces.rows; i++)
{
// Print results
cout << "Face " << i
<< ", top-left coordinates: (" << faces.at<float>(i, 0) << ", " << faces.at<float>(i, 1) << "), "
<< "box width: " << faces.at<float>(i, 2) << ", box height: " << faces.at<float>(i, 3) << ", "
<< "score: " << faces.at<float>(i, 14) << "\n";
<< "score: " << cv::format("%.2f", faces.at<float>(i, 14))
<< endl;
// Draw bounding box
rectangle(output, Rect2i(int(faces.at<float>(i, 0)), int(faces.at<float>(i, 1)), int(faces.at<float>(i, 2)), int(faces.at<float>(i, 3))), Scalar(0, 255, 0), thickness);
rectangle(input, Rect2i(int(faces.at<float>(i, 0)), int(faces.at<float>(i, 1)), int(faces.at<float>(i, 2)), int(faces.at<float>(i, 3))), Scalar(0, 255, 0), thickness);
// Draw landmarks
circle(output, Point2i(int(faces.at<float>(i, 4)), int(faces.at<float>(i, 5))), 2, Scalar(255, 0, 0), thickness);
circle(output, Point2i(int(faces.at<float>(i, 6)), int(faces.at<float>(i, 7))), 2, Scalar( 0, 0, 255), thickness);
circle(output, Point2i(int(faces.at<float>(i, 8)), int(faces.at<float>(i, 9))), 2, Scalar( 0, 255, 0), thickness);
circle(output, Point2i(int(faces.at<float>(i, 10)), int(faces.at<float>(i, 11))), 2, Scalar(255, 0, 255), thickness);
circle(output, Point2i(int(faces.at<float>(i, 12)), int(faces.at<float>(i, 13))), 2, Scalar( 0, 255, 255), thickness);
circle(input, Point2i(int(faces.at<float>(i, 4)), int(faces.at<float>(i, 5))), 2, Scalar(255, 0, 0), thickness);
circle(input, Point2i(int(faces.at<float>(i, 6)), int(faces.at<float>(i, 7))), 2, Scalar(0, 0, 255), thickness);
circle(input, Point2i(int(faces.at<float>(i, 8)), int(faces.at<float>(i, 9))), 2, Scalar(0, 255, 0), thickness);
circle(input, Point2i(int(faces.at<float>(i, 10)), int(faces.at<float>(i, 11))), 2, Scalar(255, 0, 255), thickness);
circle(input, Point2i(int(faces.at<float>(i, 12)), int(faces.at<float>(i, 13))), 2, Scalar(0, 255, 255), thickness);
}
return output;
putText(input, fpsString, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 2);
}
int main(int argc, char ** argv)
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv,
"{help h | | Print this message.}"
"{input i | | Path to the input image. Omit for detecting on default camera.}"
"{model m | yunet.onnx | Path to the model. Download yunet.onnx in https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.}"
"{score_threshold | 0.9 | Filter out faces of score < score_threshold.}"
"{nms_threshold | 0.3 | Suppress bounding boxes of iou >= nms_threshold.}"
"{top_k | 5000 | Keep top_k bounding boxes before NMS.}"
"{save s | false | Set true to save results. This flag is invalid when using camera.}"
"{vis v | true | Set true to open a window for result visualization. This flag is invalid when using camera.}"
"{help h | | Print this message}"
"{image1 i1 | | Path to the input image1. Omit for detecting through VideoCapture}"
"{image2 i2 | | Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm}"
"{video v | 0 | Path to the input video}"
"{scale sc | 1.0 | Scale factor used to resize input video frames}"
"{fd_model fd | yunet.onnx | Path to the model. Download yunet.onnx in https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx }"
"{fr_model fr | face_recognizer_fast.onnx | Path to the face recognition model. Download the model at https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view}"
"{score_threshold | 0.9 | Filter out faces of score < score_threshold}"
"{nms_threshold | 0.3 | Suppress bounding boxes of iou >= nms_threshold}"
"{top_k | 5000 | Keep top_k bounding boxes before NMS}"
"{save s | false | Set true to save results. This flag is invalid when using camera}"
);
if (argc == 1 || parser.has("help"))
if (parser.has("help"))
{
parser.printMessage();
return -1;
return 0;
}
String modelPath = parser.get<String>("model");
String fd_modelPath = parser.get<String>("fd_model");
String fr_modelPath = parser.get<String>("fr_model");
float scoreThreshold = parser.get<float>("score_threshold");
float nmsThreshold = parser.get<float>("nms_threshold");
int topK = parser.get<int>("top_k");
bool save = parser.get<bool>("save");
bool vis = parser.get<bool>("vis");
double cosine_similar_thresh = 0.363;
double l2norm_similar_thresh = 1.128;
//! [initialize_FaceDetectorYN]
// Initialize FaceDetectorYN
Ptr<FaceDetectorYN> detector = FaceDetectorYN::create(modelPath, "", Size(320, 320), scoreThreshold, nmsThreshold, topK);
Ptr<FaceDetectorYN> detector = FaceDetectorYN::create(fd_modelPath, "", Size(320, 320), scoreThreshold, nmsThreshold, topK);
//! [initialize_FaceDetectorYN]
TickMeter tm;
// If input is an image
if (parser.has("input"))
if (parser.has("image1"))
{
String input = parser.get<String>("input");
Mat image = imread(input);
String input1 = parser.get<String>("image1");
Mat image1 = imread(samples::findFile(input1));
if (image1.empty())
{
std::cerr << "Cannot read image: " << input1 << std::endl;
return 2;
}
tm.start();
//! [inference]
// Set input size before inference
detector->setInputSize(image.size());
detector->setInputSize(image1.size());
// Inference
Mat faces;
detector->detect(image, faces);
Mat faces1;
detector->detect(image1, faces1);
if (faces1.rows < 1)
{
std::cerr << "Cannot find a face in " << input1 << std::endl;
return 1;
}
//! [inference]
tm.stop();
// Draw results on the input image
Mat result = visualize(image, faces);
visualize(image1, -1, faces1, tm.getFPS());
// Save results if save is true
if(save)
if (save)
{
cout << "Results saved to result.jpg\n";
imwrite("result.jpg", result);
cout << "Saving result.jpg...\n";
imwrite("result.jpg", image1);
}
// Visualize results
if (vis)
imshow("image1", image1);
pollKey(); // handle UI events to show content
if (parser.has("image2"))
{
namedWindow(input, WINDOW_AUTOSIZE);
imshow(input, result);
waitKey(0);
String input2 = parser.get<String>("image2");
Mat image2 = imread(samples::findFile(input2));
if (image2.empty())
{
std::cerr << "Cannot read image2: " << input2 << std::endl;
return 2;
}
tm.reset();
tm.start();
detector->setInputSize(image2.size());
Mat faces2;
detector->detect(image2, faces2);
if (faces2.rows < 1)
{
std::cerr << "Cannot find a face in " << input2 << std::endl;
return 1;
}
tm.stop();
visualize(image2, -1, faces2, tm.getFPS());
if (save)
{
cout << "Saving result2.jpg...\n";
imwrite("result2.jpg", image2);
}
imshow("image2", image2);
pollKey();
//! [initialize_FaceRecognizerSF]
// Initialize FaceRecognizerSF
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(fr_modelPath, "");
//! [initialize_FaceRecognizerSF]
//! [facerecognizer]
// Aligning and cropping facial image through the first face of faces detected.
Mat aligned_face1, aligned_face2;
faceRecognizer->alignCrop(image1, faces1.row(0), aligned_face1);
faceRecognizer->alignCrop(image2, faces2.row(0), aligned_face2);
// Run feature extraction with given aligned_face
Mat feature1, feature2;
faceRecognizer->feature(aligned_face1, feature1);
feature1 = feature1.clone();
faceRecognizer->feature(aligned_face2, feature2);
feature2 = feature2.clone();
//! [facerecognizer]
//! [match]
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
//! [match]
if (cos_score >= cosine_similar_thresh)
{
std::cout << "They have the same identity;";
}
else
{
std::cout << "They have different identities;";
}
std::cout << " Cosine Similarity: " << cos_score << ", threshold: " << cosine_similar_thresh << ". (higher value means higher similarity, max 1.0)\n";
if (L2_score <= l2norm_similar_thresh)
{
std::cout << "They have the same identity;";
}
else
{
std::cout << "They have different identities.";
}
std::cout << " NormL2 Distance: " << L2_score << ", threshold: " << l2norm_similar_thresh << ". (lower value means higher similarity, min 0.0)\n";
}
cout << "Press any key to exit..." << endl;
waitKey(0);
}
else
{
int deviceId = 0;
VideoCapture cap;
cap.open(deviceId, CAP_ANY);
int frameWidth = int(cap.get(CAP_PROP_FRAME_WIDTH));
int frameHeight = int(cap.get(CAP_PROP_FRAME_HEIGHT));
int frameWidth, frameHeight;
float scale = parser.get<float>("scale");
VideoCapture capture;
std::string video = parser.get<string>("video");
if (video.size() == 1 && isdigit(video[0]))
capture.open(parser.get<int>("video"));
else
capture.open(samples::findFileOrKeep(video)); // keep GStreamer pipelines
if (capture.isOpened())
{
frameWidth = int(capture.get(CAP_PROP_FRAME_WIDTH) * scale);
frameHeight = int(capture.get(CAP_PROP_FRAME_HEIGHT) * scale);
cout << "Video " << video
<< ": width=" << frameWidth
<< ", height=" << frameHeight
<< endl;
}
else
{
cout << "Could not initialize video capturing: " << video << "\n";
return 1;
}
detector->setInputSize(Size(frameWidth, frameHeight));
Mat frame;
TickMeter tm;
String msg = "FPS: ";
while(waitKey(1) < 0) // Press any key to exit
cout << "Press 'SPACE' to save frame, any other key to exit..." << endl;
int nFrame = 0;
for (;;)
{
// Get frame
if (!cap.read(frame))
Mat frame;
if (!capture.read(frame))
{
cerr << "No frames grabbed!\n";
cerr << "Can't grab frame! Stop\n";
break;
}
resize(frame, frame, Size(frameWidth, frameHeight));
// Inference
Mat faces;
tm.start();
detector->detect(frame, faces);
tm.stop();
Mat result = frame.clone();
// Draw results on the input image
Mat result = visualize(frame, faces);
putText(result, msg + to_string(tm.getFPS()), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
visualize(result, nFrame, faces, tm.getFPS());
// Visualize results
imshow("Live", result);
tm.reset();
int key = waitKey(1);
bool saveFrame = save;
if (key == ' ')
{
saveFrame = true;
key = 0; // handled
}
if (saveFrame)
{
std::string frame_name = cv::format("frame_%05d.png", nFrame);
std::string result_name = cv::format("result_%05d.jpg", nFrame);
cout << "Saving '" << frame_name << "' and '" << result_name << "' ...\n";
imwrite(frame_name, frame);
imwrite(result_name, result);
}
++nFrame;
if (key > 0)
break;
}
cout << "Processed " << nFrame << " frames" << endl;
}
}
cout << "Done." << endl;
return 0;
}

@ -12,90 +12,144 @@ def str2bool(v):
raise NotImplementedError
parser = argparse.ArgumentParser()
parser.add_argument('--input', '-i', type=str, help='Path to the input image.')
parser.add_argument('--model', '-m', type=str, default='yunet.onnx', help='Path to the model. Download the model at https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.')
parser.add_argument('--image1', '-i1', type=str, help='Path to the input image1. Omit for detecting on default camera.')
parser.add_argument('--image2', '-i2', type=str, help='Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm.')
parser.add_argument('--video', '-v', type=str, help='Path to the input video.')
parser.add_argument('--scale', '-sc', type=float, default=1.0, help='Scale factor used to resize input video frames.')
parser.add_argument('--face_detection_model', '-fd', type=str, default='yunet.onnx', help='Path to the face detection model. Download the model at https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.')
parser.add_argument('--face_recognition_model', '-fr', type=str, default='face_recognizer_fast.onnx', help='Path to the face recognition model. Download the model at https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view.')
parser.add_argument('--score_threshold', type=float, default=0.9, help='Filtering out faces of score < score_threshold.')
parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.')
args = parser.parse_args()
def visualize(input, faces, thickness=2):
output = input.copy()
def visualize(input, faces, fps, thickness=2):
if faces[1] is not None:
for idx, face in enumerate(faces[1]):
print('Face {}, top-left coordinates: ({:.0f}, {:.0f}), box width: {:.0f}, box height {:.0f}, score: {:.2f}'.format(idx, face[0], face[1], face[2], face[3], face[-1]))
coords = face[:-1].astype(np.int32)
cv.rectangle(output, (coords[0], coords[1]), (coords[0]+coords[2], coords[1]+coords[3]), (0, 255, 0), 2)
cv.circle(output, (coords[4], coords[5]), 2, (255, 0, 0), 2)
cv.circle(output, (coords[6], coords[7]), 2, (0, 0, 255), 2)
cv.circle(output, (coords[8], coords[9]), 2, (0, 255, 0), 2)
cv.circle(output, (coords[10], coords[11]), 2, (255, 0, 255), 2)
cv.circle(output, (coords[12], coords[13]), 2, (0, 255, 255), 2)
return output
cv.rectangle(input, (coords[0], coords[1]), (coords[0]+coords[2], coords[1]+coords[3]), (0, 255, 0), thickness)
cv.circle(input, (coords[4], coords[5]), 2, (255, 0, 0), thickness)
cv.circle(input, (coords[6], coords[7]), 2, (0, 0, 255), thickness)
cv.circle(input, (coords[8], coords[9]), 2, (0, 255, 0), thickness)
cv.circle(input, (coords[10], coords[11]), 2, (255, 0, 255), thickness)
cv.circle(input, (coords[12], coords[13]), 2, (0, 255, 255), thickness)
cv.putText(input, 'FPS: {:.2f}'.format(fps), (1, 16), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
if __name__ == '__main__':
# Instantiate FaceDetectorYN
## [initialize_FaceDetectorYN]
detector = cv.FaceDetectorYN.create(
args.model,
args.face_detection_model,
"",
(320, 320),
args.score_threshold,
args.nms_threshold,
args.top_k
)
## [initialize_FaceDetectorYN]
tm = cv.TickMeter()
# If input is an image
if args.input is not None:
image = cv.imread(args.input)
if args.image1 is not None:
img1 = cv.imread(cv.samples.findFile(args.image1))
tm.start()
## [inference]
# Set input size before inference
detector.setInputSize((image.shape[1], image.shape[0]))
detector.setInputSize((img1.shape[1], img1.shape[0]))
faces1 = detector.detect(img1)
## [inference]
# Inference
faces = detector.detect(image)
tm.stop()
assert faces1[1] is not None, 'Cannot find a face in {}'.format(args.image1)
# Draw results on the input image
result = visualize(image, faces)
visualize(img1, faces1, tm.getFPS())
# Save results if save is true
if args.save:
print('Resutls saved to result.jpg\n')
cv.imwrite('result.jpg', result)
print('Results saved to result.jpg\n')
cv.imwrite('result.jpg', img1)
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, result)
cv.waitKey(0)
cv.imshow("image1", img1)
if args.image2 is not None:
img2 = cv.imread(cv.samples.findFile(args.image2))
tm.reset()
tm.start()
detector.setInputSize((img2.shape[1], img2.shape[0]))
faces2 = detector.detect(img2)
tm.stop()
assert faces2[1] is not None, 'Cannot find a face in {}'.format(args.image2)
visualize(img2, faces2, tm.getFPS())
cv.imshow("image2", img2)
## [initialize_FaceRecognizerSF]
recognizer = cv.FaceRecognizerSF.create(
args.face_recognition_model,"")
## [initialize_FaceRecognizerSF]
## [facerecognizer]
# Align faces
face1_align = recognizer.alignCrop(img1, faces1[1][0])
face2_align = recognizer.alignCrop(img2, faces2[1][0])
# Extract features
face1_feature = recognizer.feature(face1_align)
face2_feature = recognizer.feature(face2_align)
## [facerecognizer]
cosine_similarity_threshold = 0.363
l2_similarity_threshold = 1.128
## [match]
cosine_score = recognizer.match(face1_feature, face2_feature, cv.FaceRecognizerSF_FR_COSINE)
l2_score = recognizer.match(face1_feature, face2_feature, cv.FaceRecognizerSF_FR_NORM_L2)
## [match]
msg = 'different identities'
if cosine_score >= cosine_similarity_threshold:
msg = 'the same identity'
print('They have {}. Cosine Similarity: {}, threshold: {} (higher value means higher similarity, max 1.0).'.format(msg, cosine_score, cosine_similarity_threshold))
msg = 'different identities'
if l2_score <= l2_similarity_threshold:
msg = 'the same identity'
print('They have {}. NormL2 Distance: {}, threshold: {} (lower value means higher similarity, min 0.0).'.format(msg, l2_score, l2_similarity_threshold))
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
if args.video is not None:
deviceId = args.video
else:
deviceId = 0
cap = cv.VideoCapture(deviceId)
frameWidth = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
frameHeight = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
frameWidth = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)*args.scale)
frameHeight = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)*args.scale)
detector.setInputSize([frameWidth, frameHeight])
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
frame = cv.resize(frame, (frameWidth, frameHeight))
# Inference
tm.start()
faces = detector.detect(frame) # faces is a tuple
tm.stop()
# Draw results on the input image
frame = visualize(frame, faces)
visualize(frame, faces, tm.getFPS())
cv.putText(frame, 'FPS: {}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
# Visualize results in a new Window
# Visualize results
cv.imshow('Live', frame)
tm.reset()
cv.destroyAllWindows()

@ -1,103 +0,0 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "opencv2/dnn.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
#include "opencv2/objdetect.hpp"
using namespace cv;
using namespace std;
int main(int argc, char ** argv)
{
if (argc != 5)
{
std::cerr << "Usage " << argv[0] << ": "
<< "<det_onnx_path> "
<< "<reg_onnx_path> "
<< "<image1>"
<< "<image2>\n";
return -1;
}
String det_onnx_path = argv[1];
String reg_onnx_path = argv[2];
String image1_path = argv[3];
String image2_path = argv[4];
std::cout<<image1_path<<" "<<image2_path<<std::endl;
Mat image1 = imread(image1_path);
Mat image2 = imread(image2_path);
float score_thresh = 0.9f;
float nms_thresh = 0.3f;
double cosine_similar_thresh = 0.363;
double l2norm_similar_thresh = 1.128;
int top_k = 5000;
// Initialize FaceDetector
Ptr<FaceDetectorYN> faceDetector;
faceDetector = FaceDetectorYN::create(det_onnx_path, "", image1.size(), score_thresh, nms_thresh, top_k);
Mat faces_1;
faceDetector->detect(image1, faces_1);
if (faces_1.rows < 1)
{
std::cerr << "Cannot find a face in " << image1_path << "\n";
return -1;
}
faceDetector = FaceDetectorYN::create(det_onnx_path, "", image2.size(), score_thresh, nms_thresh, top_k);
Mat faces_2;
faceDetector->detect(image2, faces_2);
if (faces_2.rows < 1)
{
std::cerr << "Cannot find a face in " << image2_path << "\n";
return -1;
}
// Initialize FaceRecognizerSF
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(reg_onnx_path, "");
Mat aligned_face1, aligned_face2;
faceRecognizer->alignCrop(image1, faces_1.row(0), aligned_face1);
faceRecognizer->alignCrop(image2, faces_2.row(0), aligned_face2);
Mat feature1, feature2;
faceRecognizer->feature(aligned_face1, feature1);
feature1 = feature1.clone();
faceRecognizer->feature(aligned_face2, feature2);
feature2 = feature2.clone();
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
if(cos_score >= cosine_similar_thresh)
{
std::cout << "They have the same identity;";
}
else
{
std::cout << "They have different identities;";
}
std::cout << " Cosine Similarity: " << cos_score << ", threshold: " << cosine_similar_thresh << ". (higher value means higher similarity, max 1.0)\n";
if(L2_score <= l2norm_similar_thresh)
{
std::cout << "They have the same identity;";
}
else
{
std::cout << "They have different identities.";
}
std::cout << " NormL2 Distance: " << L2_score << ", threshold: " << l2norm_similar_thresh << ". (lower value means higher similarity, min 0.0)\n";
return 0;
}

@ -1,57 +0,0 @@
import argparse
import numpy as np
import cv2 as cv
parser = argparse.ArgumentParser()
parser.add_argument('--input1', '-i1', type=str, help='Path to the input image1.')
parser.add_argument('--input2', '-i2', type=str, help='Path to the input image2.')
parser.add_argument('--face_detection_model', '-fd', type=str, help='Path to the face detection model. Download the model at https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.')
parser.add_argument('--face_recognition_model', '-fr', type=str, help='Path to the face recognition model. Download the model at https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view.')
args = parser.parse_args()
# Read the input image
img1 = cv.imread(args.input1)
img2 = cv.imread(args.input2)
# Instantiate face detector and recognizer
detector = cv.FaceDetectorYN.create(
args.face_detection_model,
"",
(img1.shape[1], img1.shape[0])
)
recognizer = cv.FaceRecognizerSF.create(
args.face_recognition_model,
""
)
# Detect face
detector.setInputSize((img1.shape[1], img1.shape[0]))
face1 = detector.detect(img1)
detector.setInputSize((img2.shape[1], img2.shape[0]))
face2 = detector.detect(img2)
assert face1[1].shape[0] > 0, 'Cannot find a face in {}'.format(args.input1)
assert face2[1].shape[0] > 0, 'Cannot find a face in {}'.format(args.input2)
# Align faces
face1_align = recognizer.alignCrop(img1, face1[1][0])
face2_align = recognizer.alignCrop(img2, face2[1][0])
# Extract features
face1_feature = recognizer.feature(face1_align)
face2_feature = recognizer.feature(face2_align)
# Calculate distance (0: cosine, 1: L2)
cosine_similarity_threshold = 0.363
cosine_score = recognizer.match(face1_feature, face2_feature, 0)
msg = 'different identities'
if cosine_score >= cosine_similarity_threshold:
msg = 'the same identity'
print('They have {}. Cosine Similarity: {}, threshold: {} (higher value means higher similarity, max 1.0).'.format(msg, cosine_score, cosine_similarity_threshold))
l2_similarity_threshold = 1.128
l2_score = recognizer.match(face1_feature, face2_feature, 1)
msg = 'different identities'
if l2_score <= l2_similarity_threshold:
msg = 'the same identity'
print('They have {}. NormL2 Distance: {}, threshold: {} (lower value means higher similarity, min 0.0).'.format(msg, l2_score, l2_similarity_threshold))
Loading…
Cancel
Save