|
|
|
@ -70,8 +70,30 @@ sft::Octave::~Octave(){} |
|
|
|
|
bool sft::Octave::train( const cv::Mat& trainData, const cv::Mat& _responses, const cv::Mat& varIdx, |
|
|
|
|
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask) |
|
|
|
|
{ |
|
|
|
|
CvBoostParams _params; |
|
|
|
|
{ |
|
|
|
|
// tree params
|
|
|
|
|
_params.max_categories = 10; |
|
|
|
|
_params.max_depth = 2; |
|
|
|
|
_params.cv_folds = 0; |
|
|
|
|
_params.truncate_pruned_tree = false; |
|
|
|
|
_params.use_surrogates = false; |
|
|
|
|
_params.use_1se_rule = false; |
|
|
|
|
_params.regression_accuracy = 0.0; |
|
|
|
|
|
|
|
|
|
// boost params
|
|
|
|
|
_params.boost_type = CvBoost::GENTLE; |
|
|
|
|
_params.split_criteria = CvBoost::SQERR; |
|
|
|
|
_params.weight_trim_rate = 0.95; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/// ToDo: move to params
|
|
|
|
|
_params.min_sample_count = 2; |
|
|
|
|
_params.weak_count = 1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool update = false; |
|
|
|
|
return cv::Boost::train(trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params, |
|
|
|
|
return cv::Boost::train(trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, _params, |
|
|
|
|
update); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -224,7 +246,42 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool) |
|
|
|
|
processPositives(dataset, pool); |
|
|
|
|
generateNegatives(dataset); |
|
|
|
|
|
|
|
|
|
return false; |
|
|
|
|
// 2. only sumple case (all features used)
|
|
|
|
|
int nfeatures = pool.size(); |
|
|
|
|
cv::Mat varIdx(1, nfeatures, CV_32SC1); |
|
|
|
|
int* ptr = varIdx.ptr<int>(0); |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < nfeatures; ++x) |
|
|
|
|
ptr[x] = x; |
|
|
|
|
|
|
|
|
|
// 3. only sumple case (all samples used)
|
|
|
|
|
int nsamples = npositives + nnegatives; |
|
|
|
|
cv::Mat sampleIdx(1, nsamples, CV_32SC1); |
|
|
|
|
ptr = varIdx.ptr<int>(0); |
|
|
|
|
|
|
|
|
|
for (int x = 0; x < nsamples; ++x) |
|
|
|
|
ptr[x] = x; |
|
|
|
|
|
|
|
|
|
// 4. ICF has an orderable responce.
|
|
|
|
|
cv::Mat varType(1, nfeatures + 1, CV_8UC1); |
|
|
|
|
uchar* uptr = varType.ptr<uchar>(0); |
|
|
|
|
for (int x = 0; x < nfeatures; ++x) |
|
|
|
|
uptr[x] = CV_VAR_ORDERED; |
|
|
|
|
uptr[nfeatures] = CV_VAR_CATEGORICAL; |
|
|
|
|
|
|
|
|
|
cv::Mat trainData(nfeatures, nsamples, CV_32FC1); |
|
|
|
|
for (int fi = 0; fi < nfeatures; ++fi) |
|
|
|
|
{ |
|
|
|
|
float* dptr = trainData.ptr<float>(fi); |
|
|
|
|
for (int si = 0; si < nsamples; ++si) |
|
|
|
|
{ |
|
|
|
|
dptr[si] = pool.apply(fi, si, integrals); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cv::Mat missingMask; |
|
|
|
|
|
|
|
|
|
return train(trainData, responses, varIdx, sampleIdx, varType, missingMask); |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -237,6 +294,11 @@ sft::FeaturePool::FeaturePool(cv::Size m, int n) : model(m), nfeatures(n) |
|
|
|
|
|
|
|
|
|
sft::FeaturePool::~FeaturePool(){} |
|
|
|
|
|
|
|
|
|
float sft::FeaturePool::apply(int fi, int si, const Mat& integrals) const |
|
|
|
|
{ |
|
|
|
|
return 0.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void sft::FeaturePool::fill(int desired) |
|
|
|
|
{ |
|
|
|
|