|
|
|
@ -3275,13 +3275,26 @@ static BinaryFunc getConvertScaleFunc(int sdepth, int ddepth) |
|
|
|
|
static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta ) |
|
|
|
|
{ |
|
|
|
|
const ocl::Device & d = ocl::Device::getDefault(); |
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
|
|
|
kercn = ocl::predictOptimalVectorWidth(_src, _dst), rowsPerWI = d.isIntel() ? 4 : 1; |
|
|
|
|
bool doubleSupport = d.doubleFPConfig() > 0; |
|
|
|
|
|
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
|
bool doubleSupport = d.doubleFPConfig() > 0; |
|
|
|
|
if (!doubleSupport && depth == CV_64F) |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
_dst.create(_src.size(), CV_8UC(cn)); |
|
|
|
|
int kercn = 1; |
|
|
|
|
if (d.isIntel()) |
|
|
|
|
{ |
|
|
|
|
static const int vectorWidths[] = {4, 4, 4, 4, 4, 4, 4, -1}; |
|
|
|
|
kercn = ocl::checkOptimalVectorWidth( vectorWidths, _src, _dst, |
|
|
|
|
noArray(), noArray(), noArray(), |
|
|
|
|
noArray(), noArray(), noArray(), |
|
|
|
|
noArray(), ocl::OCL_VECTOR_MAX); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
kercn = ocl::predictOptimalVectorWidthMax(_src, _dst); |
|
|
|
|
|
|
|
|
|
int rowsPerWI = d.isIntel() ? 4 : 1; |
|
|
|
|
char cvt[2][50]; |
|
|
|
|
int wdepth = std::max(depth, CV_32F); |
|
|
|
|
String build_opt = format("-D OP_CONVERT_SCALE_ABS -D UNARY_OP -D dstT=%s -D srcT1=%s" |
|
|
|
@ -3299,7 +3312,6 @@ static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha |
|
|
|
|
return false; |
|
|
|
|
|
|
|
|
|
UMat src = _src.getUMat(); |
|
|
|
|
_dst.create(src.size(), CV_8UC(cn)); |
|
|
|
|
UMat dst = _dst.getUMat(); |
|
|
|
|
|
|
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src), |
|
|
|
|