Merge pull request #4012 from mshabunin:doc-fixes

pull/4027/head
Vadim Pisarevsky 10 years ago
commit a87e1c2f90
  1. 5
      doc/CMakeLists.txt
  2. 12
      doc/py_tutorials/py_calib3d/py_calibration/py_calibration.markdown
  3. 2
      doc/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.markdown
  4. 2
      doc/py_tutorials/py_objdetect/py_face_detection/py_face_detection.markdown
  5. 1
      doc/root.markdown.in
  6. 16
      doc/tutorials/calib3d/camera_calibration/camera_calibration.markdown
  7. 7
      doc/tutorials/core/mat_operations.markdown
  8. 3
      doc/tutorials/core/table_of_content_core.markdown
  9. 4
      doc/tutorials/highgui/intelperc.markdown
  10. 4
      doc/tutorials/highgui/kinect_openni.markdown
  11. 4
      doc/tutorials/highgui/table_of_content_highgui.markdown
  12. 3
      doc/tutorials/introduction/documenting_opencv/documentation_tutorial.markdown
  13. 4
      doc/tutorials/objdetect/table_of_content_objdetect.markdown
  14. 2
      doc/tutorials/objdetect/traincascade.markdown
  15. 110
      doc/user_guide/ug_features2d.markdown
  16. 8
      doc/user_guide/user_guide.markdown
  17. 3
      modules/core/include/opencv2/core.hpp
  18. 137
      modules/core/include/opencv2/core/utility.hpp
  19. 4
      modules/core/src/command_line_parser.cpp
  20. 6
      modules/imgproc/doc/colors.markdown

@ -111,12 +111,11 @@ if(BUILD_DOCS AND DOXYGEN_FOUND)
set(faqfile "${CMAKE_CURRENT_SOURCE_DIR}/faq.markdown")
set(tutorial_path "${CMAKE_CURRENT_SOURCE_DIR}/tutorials")
set(tutorial_py_path "${CMAKE_CURRENT_SOURCE_DIR}/py_tutorials")
set(user_guide_path "${CMAKE_CURRENT_SOURCE_DIR}/user_guide")
set(example_path "${CMAKE_SOURCE_DIR}/samples")
# set export variables
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_INPUT_LIST "${rootfile} ; ${faqfile} ; ${paths_include} ; ${paths_doc} ; ${tutorial_path} ; ${tutorial_py_path} ; ${user_guide_path} ; ${paths_tutorial}")
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_IMAGE_PATH "${paths_doc} ; ${tutorial_path} ; ${tutorial_py_path} ; ${user_guide_path} ; ${paths_tutorial}")
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_INPUT_LIST "${rootfile} ; ${faqfile} ; ${paths_include} ; ${paths_doc} ; ${tutorial_path} ; ${tutorial_py_path} ; ${paths_tutorial}")
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_IMAGE_PATH "${paths_doc} ; ${tutorial_path} ; ${tutorial_py_path} ; ${paths_tutorial}")
# TODO: remove paths_doc from EXAMPLE_PATH after face module tutorials/samples moved to separate folders
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_EXAMPLE_PATH "${example_path} ; ${paths_doc} ; ${paths_sample}")
set(CMAKE_DOXYGEN_LAYOUT "${CMAKE_CURRENT_SOURCE_DIR}/DoxygenLayout.xml")

@ -22,17 +22,17 @@ red line. All the expected straight lines are bulged out. Visit [Distortion
![image](images/calib_radial.jpg)
This distortion is solved as follows:
This distortion is represented as follows:
\f[x_{corrected} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) \\
y_{corrected} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6)\f]
\f[x_{distorted} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) \\
y_{distorted} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6)\f]
Similarly, another distortion is the tangential distortion which occurs because image taking lense
is not aligned perfectly parallel to the imaging plane. So some areas in image may look nearer than
expected. It is solved as below:
expected. It is represented as below:
\f[x_{corrected} = x + [ 2p_1xy + p_2(r^2+2x^2)] \\
y_{corrected} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]\f]
\f[x_{distorted} = x + [ 2p_1xy + p_2(r^2+2x^2)] \\
y_{distorted} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]\f]
In short, we need to find five parameters, known as distortion coefficients given by:

@ -89,7 +89,7 @@ just by moving your hand in front of camera and many other funny stuffs.
How to find HSV values to track?
--------------------------------
This is a common question found in [stackoverflow.com](www.stackoverflow.com). It is very simple and
This is a common question found in [stackoverflow.com](http://www.stackoverflow.com). It is very simple and
you can use the same function, cv2.cvtColor(). Instead of passing an image, you just pass the BGR
values you want. For example, to find the HSV value of Green, try following commands in Python
terminal:

@ -85,7 +85,7 @@ Haar-cascade Detection in OpenCV
OpenCV comes with a trainer as well as detector. If you want to train your own classifier for any
object like car, planes etc. you can use OpenCV to create one. Its full details are given here:
[Cascade Classifier Training.](http://docs.opencv.org/doc/user_guide/ug_traincascade.html)
[Cascade Classifier Training](@ref tutorial_traincascade).
Here we will deal with detection. OpenCV already contains many pre-trained classifiers for face,
eyes, smile etc. Those XML files are stored in opencv/data/haarcascades/ folder. Let's create face

@ -4,7 +4,6 @@ OpenCV modules {#mainpage}
- @ref intro
- @ref tutorial_root
- @ref tutorial_py_root
- @ref tutorial_user_guide
- @ref faq
- @ref citelist

@ -14,18 +14,18 @@ Theory
For the distortion OpenCV takes into account the radial and tangential factors. For the radial
factor one uses the following formula:
\f[x_{corrected} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) \\
y_{corrected} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6)\f]
\f[x_{distorted} = x( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6) \\
y_{distorted} = y( 1 + k_1 r^2 + k_2 r^4 + k_3 r^6)\f]
So for an old pixel point at \f$(x,y)\f$ coordinates in the input image, its position on the corrected
output image will be \f$(x_{corrected} y_{corrected})\f$. The presence of the radial distortion
manifests in form of the "barrel" or "fish-eye" effect.
So for an undistorted pixel point at \f$(x,y)\f$ coordinates, its position on the distorted image
will be \f$(x_{distorted} y_{distorted})\f$. The presence of the radial distortion manifests in form
of the "barrel" or "fish-eye" effect.
Tangential distortion occurs because the image taking lenses are not perfectly parallel to the
imaging plane. It can be corrected via the formulas:
imaging plane. It can be represented via the formulas:
\f[x_{corrected} = x + [ 2p_1xy + p_2(r^2+2x^2)] \\
y_{corrected} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]\f]
\f[x_{distorted} = x + [ 2p_1xy + p_2(r^2+2x^2)] \\
y_{distorted} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]\f]
So we have five distortion parameters which in OpenCV are presented as one row matrix with 5
columns:

@ -1,4 +1,4 @@
Operations with images {#tutorial_ug_mat}
Operations with images {#tutorial_mat_operations}
======================
Input/Output
@ -27,11 +27,6 @@ If you read a jpg file, a 3 channel image is created by default. If you need a g
@note use imdecode and imencode to read and write image from/to memory rather than a file.
XML/YAML
--------
TBD
Basic operations with images
----------------------------

@ -32,6 +32,9 @@ understanding how to manipulate the images on a pixel level.
You'll find out how to scan images with neighbor access and use the @ref cv::filter2D
function to apply kernel filters on images.
- @subpage tutorial_mat_operations
Reading/writing images from file, accessing pixels, primitive operations, visualizing images.
- @subpage tutorial_adding_images

@ -1,4 +1,4 @@
Using Creative Senz3D and other Intel Perceptual Computing SDK compatible depth sensors {#tutorial_ug_intelperc}
Using Creative Senz3D and other Intel Perceptual Computing SDK compatible depth sensors {#tutorial_intelperc}
=======================================================================================
Depth sensors compatible with Intel Perceptual Computing SDK are supported through VideoCapture
@ -78,5 +78,5 @@ there are two flags that should be used to set/get property of the needed genera
flag value is assumed by default if neither of the two possible values of the property is set.
For more information please refer to the example of usage
[intelpercccaptureccpp](https://github.com/Itseez/opencv/tree/master/samples/cpp/intelperc_capture.cpp)
[intelperc_capture.cpp](https://github.com/Itseez/opencv/tree/master/samples/cpp/intelperc_capture.cpp)
in opencv/samples/cpp folder.

@ -1,4 +1,4 @@
Using Kinect and other OpenNI compatible depth sensors {#tutorial_ug_highgui}
Using Kinect and other OpenNI compatible depth sensors {#tutorial_kinect_openni}
======================================================
Depth sensors compatible with OpenNI (Kinect, XtionPRO, ...) are supported through VideoCapture
@ -134,5 +134,5 @@ property. The following properties of cameras available through OpenNI interface
- CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION = CAP_OPENNI_DEPTH_GENERATOR + CAP_PROP_OPENNI_REGISTRATION
For more information please refer to the example of usage
[openniccaptureccpp](https://github.com/Itseez/opencv/tree/master/samples/cpp/openni_capture.cpp) in
[openni_capture.cpp](https://github.com/Itseez/opencv/tree/master/samples/cpp/openni_capture.cpp) in
opencv/samples/cpp folder.

@ -37,3 +37,7 @@ use the built-in graphical user interface of the library.
*Author:* Marvin Smith
Read common GIS Raster and DEM files to display and manipulate geographic data.
- @subpage tutorial_kinect_openni
- @subpage tutorial_intelperc

@ -77,8 +77,7 @@ Following scheme represents common documentation places for _opencv_ repository:
<opencv>
├── doc - doxygen config files, root page (root.markdown.in), BibTeX file (opencv.bib)
   ├── tutorials - tutorials hierarchy (pages and images)
   ├── py_tutorials - python tutorials hierarchy (pages and images)
   └── user_guide - old user guide (pages and images)
   └── py_tutorials - python tutorials hierarchy (pages and images)
├── modules
   └── <modulename>
      ├── doc - documentation pages and images for module

@ -10,3 +10,7 @@ Ever wondered how your digital camera detects peoples and faces? Look here to fi
*Author:* Ana Huamán
Here we learn how to use *objdetect* to find objects in our images or videos
- @subpage tutorial_traincascade
This tutorial describes _opencv_traincascade_ application and its parameters.

@ -1,4 +1,4 @@
Cascade Classifier Training {#tutorial_ug_traincascade}
Cascade Classifier Training {#tutorial_traincascade}
===========================
Introduction

@ -1,110 +0,0 @@
Features2d {#tutorial_ug_features2d}
==========
Detectors
---------
Descriptors
-----------
Matching keypoints
------------------
### The code
We will start with a short sample \`opencv/samples/cpp/matcher_simple.cpp\`:
@code{.cpp}
Mat img1 = imread(argv[1], IMREAD_GRAYSCALE);
Mat img2 = imread(argv[2], IMREAD_GRAYSCALE);
if(img1.empty() || img2.empty())
{
printf("Can't read one of the images\n");
return -1;
}
// detecting keypoints
SurfFeatureDetector detector(400);
vector<KeyPoint> keypoints1, keypoints2;
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);
// computing descriptors
SurfDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);
// matching descriptors
BruteForceMatcher<L2<float> > matcher;
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);
// drawing the results
namedWindow("matches", 1);
Mat img_matches;
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);
imshow("matches", img_matches);
waitKey(0);
@endcode
### The code explained
Let us break the code down.
@code{.cpp}
Mat img1 = imread(argv[1], IMREAD_GRAYSCALE);
Mat img2 = imread(argv[2], IMREAD_GRAYSCALE);
if(img1.empty() || img2.empty())
{
printf("Can't read one of the images\n");
return -1;
}
@endcode
We load two images and check if they are loaded correctly.
@code{.cpp}
// detecting keypoints
Ptr<FeatureDetector> detector = FastFeatureDetector::create(15);
vector<KeyPoint> keypoints1, keypoints2;
detector->detect(img1, keypoints1);
detector->detect(img2, keypoints2);
@endcode
First, we create an instance of a keypoint detector. All detectors inherit the abstract
FeatureDetector interface, but the constructors are algorithm-dependent. The first argument to each
detector usually controls the balance between the amount of keypoints and their stability. The range
of values is different for different detectors (For instance, *FAST* threshold has the meaning of
pixel intensity difference and usually varies in the region *[0,40]*. *SURF* threshold is applied to
a Hessian of an image and usually takes on values larger than *100*), so use defaults in case of
doubt.
@code{.cpp}
// computing descriptors
Ptr<SURF> extractor = SURF::create();
Mat descriptors1, descriptors2;
extractor->compute(img1, keypoints1, descriptors1);
extractor->compute(img2, keypoints2, descriptors2);
@endcode
We create an instance of descriptor extractor. The most of OpenCV descriptors inherit
DescriptorExtractor abstract interface. Then we compute descriptors for each of the keypoints. The
output Mat of the DescriptorExtractor::compute method contains a descriptor in a row *i* for each
*i*-th keypoint. Note that the method can modify the keypoints vector by removing the keypoints such
that a descriptor for them is not defined (usually these are the keypoints near image border). The
method makes sure that the ouptut keypoints and descriptors are consistent with each other (so that
the number of keypoints is equal to the descriptors row count). :
@code{.cpp}
// matching descriptors
BruteForceMatcher<L2<float> > matcher;
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);
@endcode
Now that we have descriptors for both images, we can match them. First, we create a matcher that for
each descriptor from image 2 does exhaustive search for the nearest descriptor in image 1 using
Euclidean metric. Manhattan distance is also implemented as well as a Hamming distance for Brief
descriptor. The output vector matches contains pairs of corresponding points indices. :
@code{.cpp}
// drawing the results
namedWindow("matches", 1);
Mat img_matches;
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);
imshow("matches", img_matches);
waitKey(0);
@endcode
The final part of the sample is about visualizing the matching results.

@ -1,8 +0,0 @@
OpenCV User Guide {#tutorial_user_guide}
=================
- @subpage tutorial_ug_mat
- @subpage tutorial_ug_features2d
- @subpage tutorial_ug_highgui
- @subpage tutorial_ug_traincascade
- @subpage tutorial_ug_intelperc

@ -1282,7 +1282,8 @@ equivalent matrix expressions:
@endcode
@param src1 first input array or a scalar; when it is an array, it must have a single channel.
@param src2 second input array or a scalar; when it is an array, it must have a single channel.
@param dst output array that has the same size and type as the input arrays.
@param dst output array of type ref CV_8U that has the same size and the same number of channels as
the input arrays.
@param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
@sa checkRange, min, max, threshold
*/

@ -539,7 +539,7 @@ private:
virtual void deleteDataInstance(void* data) const { delete (T*)data; }
};
/** @brief designed for command line arguments parsing
/** @brief Designed for command line parsing
The sample below demonstrates how to use CommandLineParser:
@code
@ -569,8 +569,19 @@ The sample below demonstrates how to use CommandLineParser:
return 0;
}
@endcode
Syntax:
@code
### Keys syntax
The keys parameter is a string containing several blocks, each one is enclosed in curley braces and
describes one argument. Each argument contains three parts separated by the `|` symbol:
-# argument names is a space-separated list of option synonyms (to mark argument as positional, prefix it with the `@` symbol)
-# default value will be used if the argument was not provided (can be empty)
-# help message (can be empty)
For example:
@code{.cpp}
const String keys =
"{help h usage ? | | print this message }"
"{@image1 | | image1 for compare }"
@ -581,27 +592,89 @@ Syntax:
"{N count |100 | count of objects }"
"{ts timestamp | | use time stamp }"
;
}
@endcode
Use:
@code
# ./app -N=200 1.png 2.jpg 19 -ts
# ./app -fps=aaa
### Usage
For the described keys:
@code{.sh}
# Good call (3 positional parameters: image1, image2 and repeat; N is 200, ts is true)
$ ./app -N=200 1.png 2.jpg 19 -ts
# Bad call
$ ./app -fps=aaa
ERRORS:
Exception: can not convert: [aaa] to [double]
@endcode
*/
class CV_EXPORTS CommandLineParser
{
public:
public:
/** @brief Constructor
Initializes command line parser object
@param argc number of command line arguments (from main())
@param argv array of command line arguments (from main())
@param keys string describing acceptable command line parameters (see class description for syntax)
*/
CommandLineParser(int argc, const char* const argv[], const String& keys);
/** @brief Copy constructor */
CommandLineParser(const CommandLineParser& parser);
/** @brief Assignment operator */
CommandLineParser& operator = (const CommandLineParser& parser);
/** @brief Destructor */
~CommandLineParser();
/** @brief Returns application path
This method returns the path to the executable from the command line (`argv[0]`).
For example, if the application has been started with such command:
@code{.sh}
$ ./bin/my-executable
@endcode
this method will return `./bin`.
*/
String getPathToApplication() const;
/** @brief Access arguments by name
Returns argument converted to selected type. If the argument is not known or can not be
converted to selected type, the error flag is set (can be checked with @ref check).
For example, define:
@code{.cpp}
String keys = "{N count||}";
@endcode
Call:
@code{.sh}
$ ./my-app -N=20
# or
$ ./my-app --count=20
@endcode
Access:
@code{.cpp}
int N = parser.get<int>("N");
@endcode
@param name name of the argument
@param space_delete remove spaces from the left and right of the string
@tparam T the argument will be converted to this type if possible
@note You can access positional arguments by their `@`-prefixed name:
@code{.cpp}
parser.get<String>("@image");
@endcode
*/
template <typename T>
T get(const String& name, bool space_delete = true) const
{
@ -610,6 +683,30 @@ class CV_EXPORTS CommandLineParser
return val;
}
/** @brief Access positional arguments by index
Returns argument converted to selected type. Indexes are counted from zero.
For example, define:
@code{.cpp}
String keys = "{@arg1||}{@arg2||}"
@endcode
Call:
@code{.sh}
./my-app abc qwe
@endcode
Access arguments:
@code{.cpp}
String val_1 = parser.get<String>(0); // returns "abc", arg1
String val_2 = parser.get<String>(1); // returns "qwe", arg2
@endcode
@param index index of the argument
@param space_delete remove spaces from the left and right of the string
@tparam T the argument will be converted to this type if possible
*/
template <typename T>
T get(int index, bool space_delete = true) const
{
@ -618,13 +715,37 @@ class CV_EXPORTS CommandLineParser
return val;
}
/** @brief Check if field was provided in the command line
@param name argument name to check
*/
bool has(const String& name) const;
/** @brief Check for parsing errors
Returns true if error occured while accessing the parameters (bad conversion, missing arguments,
etc.). Call @ref printErrors to print error messages list.
*/
bool check() const;
/** @brief Set the about message
The about message will be shown when @ref printMessage is called, right before arguments table.
*/
void about(const String& message);
/** @brief Print help message
This method will print standard help message containing the about message and arguments description.
@sa about
*/
void printMessage() const;
/** @brief Print list of errors occured
@sa check
*/
void printErrors() const;
protected:

@ -108,7 +108,7 @@ void CommandLineParser::getByName(const String& name, bool space_delete, int typ
}
}
impl->error = true;
impl->error_message = impl->error_message + "Unknown parametes " + name + "\n";
impl->error_message = impl->error_message + "Unknown parameter " + name + "\n";
}
catch (std::exception& e)
{
@ -133,7 +133,7 @@ void CommandLineParser::getByIndex(int index, bool space_delete, int type, void*
}
}
impl->error = true;
impl->error_message = impl->error_message + "Unknown parametes #" + format("%d", index) + "\n";
impl->error_message = impl->error_message + "Unknown parameter #" + format("%d", index) + "\n";
}
catch(std::exception & e)
{

@ -78,9 +78,9 @@ scaled to fit the 0 to 1 range.
\f[L \leftarrow \frac{V_{max} + V_{min}}{2}\f]
\f[S \leftarrow \fork { \frac{V_{max} - V_{min}}{V_{max} + V_{min}} }{if \(L < 0.5\) }
{ \frac{V_{max} - V_{min}}{2 - (V_{max} + V_{min})} }{if \(L \ge 0.5\) }\f]
\f[H \leftarrow \forkthree {{60(G - B)}/{S}}{if \(V_{max}=R\) }
{{120+60(B - R)}/{S}}{if \(V_{max}=G\) }
{{240+60(R - G)}/{S}}{if \(V_{max}=B\) }\f]
\f[H \leftarrow \forkthree {{60(G - B)}/{(V_{max}-V_{min})}}{if \(V_{max}=R\) }
{{120+60(B - R)}/{(V_{max}-V_{min})}}{if \(V_{max}=G\) }
{{240+60(R - G)}/{(V_{max}-V_{min})}}{if \(V_{max}=B\) }\f]
If \f$H<0\f$ then \f$H \leftarrow H+360\f$ . On output \f$0 \leq L \leq 1\f$, \f$0 \leq S \leq
1\f$, \f$0 \leq H \leq 360\f$ .

Loading…
Cancel
Save