|
|
|
@ -252,31 +252,35 @@ TEST(ML_ANN, ActivationFunction) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(ML_ANN, Method) |
|
|
|
|
CV_ENUM(ANN_MLP_METHOD, ANN_MLP::RPROP, ANN_MLP::ANNEAL) |
|
|
|
|
|
|
|
|
|
typedef tuple<ANN_MLP_METHOD, string, int> ML_ANN_METHOD_Params; |
|
|
|
|
typedef TestWithParam<ML_ANN_METHOD_Params> ML_ANN_METHOD; |
|
|
|
|
|
|
|
|
|
TEST_P(ML_ANN_METHOD, Test) |
|
|
|
|
{ |
|
|
|
|
int methodType = get<0>(GetParam()); |
|
|
|
|
string methodName = get<1>(GetParam()); |
|
|
|
|
int N = get<2>(GetParam()); |
|
|
|
|
|
|
|
|
|
String folder = string(cvtest::TS::ptr()->get_data_path()); |
|
|
|
|
String original_path = folder + "waveform.data"; |
|
|
|
|
String dataname = folder + "waveform"; |
|
|
|
|
String dataname = folder + "waveform" + '_' + methodName; |
|
|
|
|
|
|
|
|
|
Ptr<TrainData> tdata2 = TrainData::loadFromCSV(original_path, 0); |
|
|
|
|
Mat responses(tdata2->getResponses().rows, 3, CV_32FC1, Scalar(0)); |
|
|
|
|
for (int i = 0; i<tdata2->getResponses().rows; i++) |
|
|
|
|
Mat samples = tdata2->getSamples()(Range(0, N), Range::all()); |
|
|
|
|
Mat responses(N, 3, CV_32FC1, Scalar(0)); |
|
|
|
|
for (int i = 0; i < N; i++) |
|
|
|
|
responses.at<float>(i, static_cast<int>(tdata2->getResponses().at<float>(i, 0))) = 1; |
|
|
|
|
Ptr<TrainData> tdata = TrainData::create(tdata2->getSamples(), ml::ROW_SAMPLE, responses); |
|
|
|
|
Ptr<TrainData> tdata = TrainData::create(samples, ml::ROW_SAMPLE, responses); |
|
|
|
|
|
|
|
|
|
ASSERT_FALSE(tdata.empty()) << "Could not find test data file : " << original_path; |
|
|
|
|
RNG& rng = theRNG(); |
|
|
|
|
rng.state = 0; |
|
|
|
|
tdata->setTrainTestSplitRatio(0.8); |
|
|
|
|
|
|
|
|
|
vector<int> methodType; |
|
|
|
|
methodType.push_back(ml::ANN_MLP::RPROP); |
|
|
|
|
methodType.push_back(ml::ANN_MLP::ANNEAL); |
|
|
|
|
// methodType.push_back(ml::ANN_MLP::BACKPROP); -----> NO BACKPROP TEST
|
|
|
|
|
vector<String> methodName; |
|
|
|
|
methodName.push_back("_rprop"); |
|
|
|
|
methodName.push_back("_anneal"); |
|
|
|
|
// methodName.push_back("_backprop"); -----> NO BACKPROP TEST
|
|
|
|
|
Mat testSamples = tdata->getTestSamples(); |
|
|
|
|
|
|
|
|
|
#ifdef GENERATE_TESTDATA |
|
|
|
|
{ |
|
|
|
|
Ptr<ml::ANN_MLP> xx = ml::ANN_MLP_ANNEAL::create(); |
|
|
|
@ -296,14 +300,13 @@ TEST(ML_ANN, Method) |
|
|
|
|
fs.release(); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
for (size_t i = 0; i < methodType.size(); i++) |
|
|
|
|
{ |
|
|
|
|
FileStorage fs; |
|
|
|
|
fs.open(dataname + "_init_weight.yml.gz", FileStorage::READ + FileStorage::BASE64); |
|
|
|
|
fs.open(dataname + "_init_weight.yml.gz", FileStorage::READ); |
|
|
|
|
Ptr<ml::ANN_MLP> x = ml::ANN_MLP_ANNEAL::create(); |
|
|
|
|
x->read(fs.root()); |
|
|
|
|
x->setTrainMethod(methodType[i]); |
|
|
|
|
if (methodType[i] == ml::ANN_MLP::ANNEAL) |
|
|
|
|
x->setTrainMethod(methodType); |
|
|
|
|
if (methodType == ml::ANN_MLP::ANNEAL) |
|
|
|
|
{ |
|
|
|
|
x->setAnnealEnergyRNG(RNG(CV_BIG_INT(0xffffffff))); |
|
|
|
|
x->setAnnealInitialT(12); |
|
|
|
@ -313,28 +316,50 @@ TEST(ML_ANN, Method) |
|
|
|
|
} |
|
|
|
|
x->setTermCriteria(TermCriteria(TermCriteria::COUNT, 100, 0.01)); |
|
|
|
|
x->train(tdata, ml::ANN_MLP::NO_OUTPUT_SCALE + ml::ANN_MLP::NO_INPUT_SCALE + ml::ANN_MLP::UPDATE_WEIGHTS); |
|
|
|
|
ASSERT_TRUE(x->isTrained()) << "Could not train networks with " << methodName[i]; |
|
|
|
|
ASSERT_TRUE(x->isTrained()) << "Could not train networks with " << methodName; |
|
|
|
|
string filename = dataname + ".yml.gz"; |
|
|
|
|
Mat r_gold; |
|
|
|
|
#ifdef GENERATE_TESTDATA |
|
|
|
|
x->save(dataname + methodName[i] + ".yml.gz"); |
|
|
|
|
x->save(filename); |
|
|
|
|
x->predict(testSamples, r_gold); |
|
|
|
|
{ |
|
|
|
|
FileStorage fs_response(dataname + "_response.yml.gz", FileStorage::WRITE + FileStorage::BASE64); |
|
|
|
|
fs_response << "response" << r_gold; |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
{ |
|
|
|
|
FileStorage fs_response(dataname + "_response.yml.gz", FileStorage::READ); |
|
|
|
|
fs_response["response"] >> r_gold; |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(dataname + methodName[i] + ".yml.gz"); |
|
|
|
|
ASSERT_TRUE(y != NULL) << "Could not load " << dataname + methodName[i] + ".yml"; |
|
|
|
|
Mat testSamples = tdata->getTestSamples(); |
|
|
|
|
Mat rx, ry, dst; |
|
|
|
|
ASSERT_FALSE(r_gold.empty()); |
|
|
|
|
Ptr<ml::ANN_MLP> y = Algorithm::load<ANN_MLP>(filename); |
|
|
|
|
ASSERT_TRUE(y != NULL) << "Could not load " << filename; |
|
|
|
|
Mat rx, ry; |
|
|
|
|
for (int j = 0; j < 4; j++) |
|
|
|
|
{ |
|
|
|
|
rx = x->getWeights(j); |
|
|
|
|
ry = y->getWeights(j); |
|
|
|
|
double n = cvtest::norm(rx, ry, NORM_INF); |
|
|
|
|
EXPECT_LT(n, FLT_EPSILON) << "Weights are not equal for " << dataname + methodName[i] + ".yml and " << methodName[i] << " layer : " << j; |
|
|
|
|
EXPECT_LT(n, FLT_EPSILON) << "Weights are not equal for layer: " << j; |
|
|
|
|
} |
|
|
|
|
x->predict(testSamples, rx); |
|
|
|
|
y->predict(testSamples, ry); |
|
|
|
|
double n = cvtest::norm(rx, ry, NORM_INF); |
|
|
|
|
EXPECT_LT(n, FLT_EPSILON) << "Predict are not equal for " << dataname + methodName[i] + ".yml and " << methodName[i]; |
|
|
|
|
double n = cvtest::norm(ry, rx, NORM_INF); |
|
|
|
|
EXPECT_LT(n, FLT_EPSILON) << "Predict are not equal to result of the saved model"; |
|
|
|
|
n = cvtest::norm(r_gold, rx, NORM_INF); |
|
|
|
|
EXPECT_LT(n, FLT_EPSILON) << "Predict are not equal to 'gold' response"; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*none*/, ML_ANN_METHOD, |
|
|
|
|
testing::Values( |
|
|
|
|
make_tuple<ANN_MLP_METHOD, string, int>(ml::ANN_MLP::RPROP, "rprop", 5000), |
|
|
|
|
make_tuple<ANN_MLP_METHOD, string, int>(ml::ANN_MLP::ANNEAL, "anneal", 1000) |
|
|
|
|
//make_pair<ANN_MLP_METHOD, string>(ml::ANN_MLP::BACKPROP, "backprop", 5000); -----> NO BACKPROP TEST
|
|
|
|
|
) |
|
|
|
|
); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 6. dtree
|
|
|
|
|
// 7. boost
|
|
|
|
|