@ -29,7 +29,7 @@ class Test_Int8_layers : public DNNTestLayer
public :
void testLayer ( const String & basename , const String & importer , double l1 , double lInf ,
int numInps = 1 , int numOuts = 1 , bool useCaffeModel = false ,
bool useCommonInputBlob = true , bool hasText = false )
bool useCommonInputBlob = true , bool hasText = false , bool perChannel = true )
{
CV_Assert_N ( numInps > = 1 , numInps < = 10 , numOuts > = 1 , numOuts < = 10 ) ;
std : : vector < Mat > inps ( numInps ) , inps_int8 ( numInps ) ;
@ -75,7 +75,7 @@ public:
for ( int i = 0 ; i < numOuts ; i + + )
refs [ i ] = blobFromNPY ( outPath + ( ( numOuts > 1 ) ? cv : : format ( " _%d.npy " , i ) : " .npy " ) ) ;
qnet = net . quantize ( inps , CV_8S , CV_8S ) ;
qnet = net . quantize ( inps , CV_8S , CV_8S , perChannel ) ;
qnet . getInputDetails ( inputScale , inputZp ) ;
qnet . getOutputDetails ( outputScale , outputZp ) ;
@ -103,6 +103,12 @@ TEST_P(Test_Int8_layers, Convolution1D)
{
testLayer ( " conv1d " , " ONNX " , 0.00302 , 0.00909 ) ;
testLayer ( " conv1d_bias " , " ONNX " , 0.00306 , 0.00948 ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testLayer ( " conv1d " , " ONNX " , 0.00302 , 0.00909 , 1 , 1 , false , true , false , false ) ;
testLayer ( " conv1d_bias " , " ONNX " , 0.00319 , 0.00948 , 1 , 1 , false , true , false , false ) ;
}
}
TEST_P ( Test_Int8_layers , Convolution2D )
@ -130,6 +136,18 @@ TEST_P(Test_Int8_layers, Convolution2D)
applyTestTag ( CV_TEST_TAG_DNN_SKIP_TIMVX ) ;
testLayer ( " layer_convolution " , " Caffe " , 0.0174 , 0.0758 , 1 , 1 , true ) ;
testLayer ( " depthwise_conv2d " , " TensorFlow " , 0.0388 , 0.169 ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testLayer ( " single_conv " , " TensorFlow " , 0.00413 , 0.02301 , 1 , 1 , false , true , false , false ) ;
testLayer ( " atrous_conv2d_valid " , " TensorFlow " , 0.027967 , 0.07808 , 1 , 1 , false , true , false , false ) ;
testLayer ( " atrous_conv2d_same " , " TensorFlow " , 0.01945 , 0.1322 , 1 , 1 , false , true , false , false ) ;
testLayer ( " keras_atrous_conv2d_same " , " TensorFlow " , 0.005677 , 0.03327 , 1 , 1 , false , true , false , false ) ;
testLayer ( " convolution " , " ONNX " , 0.00538 , 0.01517 , 1 , 1 , false , true , false , false ) ;
testLayer ( " two_convolution " , " ONNX " , 0.00295 , 0.00926 , 1 , 1 , false , true , false , false ) ;
testLayer ( " layer_convolution " , " Caffe " , 0.0175 , 0.0759 , 1 , 1 , true , true , false , false ) ;
testLayer ( " depthwise_conv2d " , " TensorFlow " , 0.041847 , 0.18744 , 1 , 1 , false , true , false , false ) ;
}
}
TEST_P ( Test_Int8_layers , Convolution3D )
@ -144,6 +162,13 @@ TEST_P(Test_Int8_layers, Flatten)
testLayer ( " flatten " , " TensorFlow " , 0.0036 , 0.0069 , 1 , 1 , false , true , true ) ;
testLayer ( " unfused_flatten " , " TensorFlow " , 0.0014 , 0.0028 ) ;
testLayer ( " unfused_flatten_unknown_batch " , " TensorFlow " , 0.0043 , 0.0051 ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testLayer ( " conv3d " , " TensorFlow " , 0.00734 , 0.02434 , 1 , 1 , false , true , false , false ) ;
testLayer ( " conv3d " , " ONNX " , 0.00377 , 0.01362 , 1 , 1 , false , true , false , false ) ;
testLayer ( " conv3d_bias " , " ONNX " , 0.00201 , 0.0039 , 1 , 1 , false , true , false , false ) ;
}
}
TEST_P ( Test_Int8_layers , Padding )
@ -349,6 +374,20 @@ TEST_P(Test_Int8_layers, InnerProduct)
testLayer ( " constant " , " ONNX " , 0.00021 , 0.0006 ) ;
testLayer ( " lin_with_constant " , " ONNX " , 0.0011 , 0.0016 ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testLayer ( " layer_inner_product " , " Caffe " , 0.0055 , 0.02 , 1 , 1 , true , true , false , false ) ;
testLayer ( " matmul " , " TensorFlow " , 0.0075 , 0.019 , 1 , 1 , false , true , false , false ) ;
testLayer ( " nhwc_transpose_reshape_matmul " , " TensorFlow " , 0.0009 , 0.0091 , 1 , 1 , false , true , false , false ) ;
testLayer ( " nhwc_reshape_matmul " , " TensorFlow " , 0.037 , 0.071 , 1 , 1 , false , true , false , false ) ;
testLayer ( " matmul_layout " , " TensorFlow " , 0.035 , 0.095 , 1 , 1 , false , true , false , false ) ;
testLayer ( " tf2_dense " , " TensorFlow " , 0 , 0 , 1 , 1 , false , true , false , false ) ;
testLayer ( " matmul_add " , " ONNX " , 0.041 , 0.082 , 1 , 1 , false , true , false , false ) ;
testLayer ( " linear " , " ONNX " , 0.0022 , 0.004 , 1 , 1 , false , true , false , false ) ;
testLayer ( " constant " , " ONNX " , 0.00038 , 0.0012 , 1 , 1 , false , true , false , false ) ;
testLayer ( " lin_with_constant " , " ONNX " , 0.0011 , 0.0016 , 1 , 1 , false , true , false , false ) ;
}
}
TEST_P ( Test_Int8_layers , Reshape )
@ -465,9 +504,9 @@ INSTANTIATE_TEST_CASE_P(/**/, Test_Int8_layers, dnnBackendsAndTargetsInt8());
class Test_Int8_nets : public DNNTestLayer
{
public :
void testClassificationNet ( Net baseNet , const Mat & blob , const Mat & ref , double l1 , double lInf )
void testClassificationNet ( Net baseNet , const Mat & blob , const Mat & ref , double l1 , double lInf , bool perChannel = true )
{
Net qnet = baseNet . quantize ( blob , CV_32F , CV_32F ) ;
Net qnet = baseNet . quantize ( blob , CV_32F , CV_32F , perChannel ) ;
qnet . setPreferableBackend ( backend ) ;
qnet . setPreferableTarget ( target ) ;
@ -477,9 +516,9 @@ public:
}
void testDetectionNet ( Net baseNet , const Mat & blob , const Mat & ref ,
double confThreshold , double scoreDiff , double iouDiff )
double confThreshold , double scoreDiff , double iouDiff , bool perChannel = true )
{
Net qnet = baseNet . quantize ( blob , CV_32F , CV_32F ) ;
Net qnet = baseNet . quantize ( blob , CV_32F , CV_32F , perChannel ) ;
qnet . setPreferableBackend ( backend ) ;
qnet . setPreferableTarget ( target ) ;
@ -488,14 +527,14 @@ public:
normAssertDetections ( ref , out , " " , confThreshold , scoreDiff , iouDiff ) ;
}
void testFaster ( Net baseNet , const Mat & ref , double confThreshold , double scoreDiff , double iouDiff )
void testFaster ( Net baseNet , const Mat & ref , double confThreshold , double scoreDiff , double iouDiff , bool perChannel = true )
{
Mat inp = imread ( _tf ( " dog416.png " ) ) ;
resize ( inp , inp , Size ( 800 , 600 ) ) ;
Mat blob = blobFromImage ( inp , 1.0 , Size ( ) , Scalar ( 102.9801 , 115.9465 , 122.7717 ) , false , false ) ;
Mat imInfo = ( Mat_ < float > ( 1 , 3 ) < < inp . rows , inp . cols , 1.6f ) ;
Net qnet = baseNet . quantize ( std : : vector < Mat > { blob , imInfo } , CV_32F , CV_32F ) ;
Net qnet = baseNet . quantize ( std : : vector < Mat > { blob , imInfo } , CV_32F , CV_32F , perChannel ) ;
qnet . setPreferableBackend ( backend ) ;
qnet . setPreferableTarget ( target ) ;
@ -505,7 +544,7 @@ public:
normAssertDetections ( ref , out , " " , confThreshold , scoreDiff , iouDiff ) ;
}
void testONNXNet ( const String & basename , double l1 , double lInf , bool useSoftmax = false )
void testONNXNet ( const String & basename , double l1 , double lInf , bool useSoftmax = false , bool perChannel = true )
{
String onnxmodel = findDataFile ( " dnn/onnx/models/ " + basename + " .onnx " , false ) ;
@ -515,7 +554,7 @@ public:
baseNet . setPreferableBackend ( backend ) ;
baseNet . setPreferableTarget ( target ) ;
Net qnet = baseNet . quantize ( blob , CV_32F , CV_32F ) ;
Net qnet = baseNet . quantize ( blob , CV_32F , CV_32F , perChannel ) ;
qnet . setInput ( blob ) ;
Mat out = qnet . forward ( ) ;
@ -538,7 +577,7 @@ public:
void testDarknetModel ( const std : : string & cfg , const std : : string & weights ,
const cv : : Mat & ref , double scoreDiff , double iouDiff ,
float confThreshold = 0.24 , float nmsThreshold = 0.4 )
float confThreshold = 0.24 , float nmsThreshold = 0.4 , bool perChannel = true )
{
CV_Assert ( ref . cols = = 7 ) ;
std : : vector < std : : vector < int > > refClassIds ;
@ -578,7 +617,7 @@ public:
Mat inp = blobFromImages ( samples , 1.0 / 255 , Size ( 416 , 416 ) , Scalar ( ) , true , false ) ;
Net baseNet = readNetFromDarknet ( findDataFile ( " dnn/ " + cfg ) , findDataFile ( " dnn/ " + weights , false ) ) ;
Net qnet = baseNet . quantize ( inp , CV_32F , CV_32F ) ;
Net qnet = baseNet . quantize ( inp , CV_32F , CV_32F , perChannel ) ;
qnet . setPreferableBackend ( backend ) ;
qnet . setPreferableTarget ( target ) ;
qnet . setInput ( inp ) ;
@ -720,6 +759,11 @@ TEST_P(Test_Int8_nets, ResNet50)
float l1 = 3e-4 , lInf = 0.05 ;
testClassificationNet ( net , blob , ref , l1 , lInf ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testClassificationNet ( net , blob , ref , l1 , lInf , false ) ;
}
}
TEST_P ( Test_Int8_nets , DenseNet121 )
@ -954,6 +998,11 @@ TEST_P(Test_Int8_nets, EfficientDet)
float confThreshold = 0.65 , scoreDiff = 0.3 , iouDiff = 0.18 ;
testDetectionNet ( net , blob , ref , confThreshold , scoreDiff , iouDiff ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testDetectionNet ( net , blob , ref , 0.85 , scoreDiff , iouDiff , false ) ;
}
}
TEST_P ( Test_Int8_nets , FasterRCNN_resnet50 )
@ -1147,11 +1196,20 @@ TEST_P(Test_Int8_nets, TinyYoloVoc)
{
SCOPED_TRACE ( " batch size 1 " ) ;
testDarknetModel ( config_file , weights_file , ref . rowRange ( 0 , 2 ) , scoreDiff , iouDiff ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testDarknetModel ( config_file , weights_file , ref . rowRange ( 0 , 2 ) , 0.1 , 0.2 , 0.24 , 0.6 , false ) ;
}
}
{
SCOPED_TRACE ( " batch size 2 " ) ;
testDarknetModel ( config_file , weights_file , ref , scoreDiff , iouDiff ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testDarknetModel ( config_file , weights_file , ref , 0.1 , 0.2 , 0.24 , 0.6 , false ) ;
}
}
}
@ -1269,6 +1327,11 @@ TEST_P(Test_Int8_nets, YOLOv4_tiny)
{
SCOPED_TRACE ( " batch size 1 " ) ;
testDarknetModel ( config_file , weights_file , ref . rowRange ( 0 , N0 ) , scoreDiff , iouDiff , confThreshold ) ;
{
SCOPED_TRACE ( " Per-tensor quantize " ) ;
testDarknetModel ( config_file , weights_file , ref . rowRange ( 0 , N0 ) , scoreDiff , 0.16 , 0.7 , 0.4 , false ) ;
}
}
throw SkipTestException ( " batch2: bad accuracy on second image " ) ;