Added tutorials for using thrust.

pull/5400/head
Dan 9 years ago
parent 9633e2c93e
commit a80e0cf8bd
  1. 10
      samples/cpp/tutorial_code/gpu/gpu-thrust-interop/CMakeLists.txt
  2. 74
      samples/cpp/tutorial_code/gpu/gpu-thrust-interop/Thrust_interop.hpp
  3. 88
      samples/cpp/tutorial_code/gpu/gpu-thrust-interop/main.cu

@ -0,0 +1,10 @@
CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
FIND_PACKAGE(CUDA REQUIRED)
INCLUDE_DIRECTORIES(${CUDA_INCLUDE_DIRS})
FIND_PACKAGE(OpenCV REQUIRED COMPONENTS core)
INCLUDE_DIRECTORIES(${OpenCV_INCLUDE_DIRS})
CUDA_ADD_EXECUTABLE(opencv_thrust main.cu)
TARGET_LINK_LIBRARIES(opencv_thrust ${OpenCV_LIBS})

@ -0,0 +1,74 @@
#pragma once
#include <opencv2/core/cuda.hpp>
#include <thrust/iterator/permutation_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/device_ptr.h>
template<typename T> struct
CV_TYPE
{
static const int DEPTH;
};
template<> static const int CV_TYPE<float>::DEPTH = CV_32F;
template<> static const int CV_TYPE<double>::DEPTH = CV_64F;
template<> static const int CV_TYPE<int>::DEPTH = CV_32S;
template<> static const int CV_TYPE<uchar>::DEPTH = CV_8U;
template<> static const int CV_TYPE<char>::DEPTH = CV_8S;
template<> static const int CV_TYPE<ushort>::DEPTH = CV_16U;
template<> static const int CV_TYPE<short>::DEPTH = CV_16S;
template<typename T> struct step_functor : public thrust::unary_function<int, int>
{
int columns;
int step;
int channels;
__host__ __device__ step_functor(int columns_, int step_, int channels_ = 1) : columns(columns_), step(step_), channels(channels_) { };
__host__ step_functor(cv::cuda::GpuMat& mat)
{
CV_Assert(mat.depth() == CV_TYPE<T>::DEPTH);
columns = mat.cols;
step = mat.step / sizeof(T);
channels = mat.channels();
}
__host__ __device__
int operator()(int x) const
{
int row = x / columns;
int idx = (row * step) + (x % columns)*channels;
return idx;
}
};
/*
@Brief GpuMatBeginItr returns a thrust compatible iterator to the beginning of a GPU mat's memory.
@Param mat is the input matrix
@Param channel is the channel of the matrix that the iterator is accessing. If set to -1, the iterator will access every element in sequential order
*/
template<typename T>
thrust::permutation_iterator<thrust::device_ptr<T>, thrust::transform_iterator<step_functor<T>, thrust::counting_iterator<int>>> GpuMatBeginItr(cv::cuda::GpuMat mat, int channel = 0)
{
if (channel == -1)
mat = mat.reshape(1);
CV_Assert(mat.depth() == CV_TYPE<T>::DEPTH);
CV_Assert(channel < mat.channels());
return thrust::make_permutation_iterator(thrust::device_pointer_cast(mat.ptr<T>(0) + channel),
thrust::make_transform_iterator(thrust::make_counting_iterator(0), step_functor<T>(mat.cols, mat.step / sizeof(T), mat.channels())));
}
/*
@Brief GpuMatEndItr returns a thrust compatible iterator to the end of a GPU mat's memory.
@Param mat is the input matrix
@Param channel is the channel of the matrix that the iterator is accessing. If set to -1, the iterator will access every element in sequential order
*/
template<typename T>
thrust::permutation_iterator<thrust::device_ptr<T>, thrust::transform_iterator<step_functor<T>, thrust::counting_iterator<int>>> GpuMatEndItr(cv::cuda::GpuMat mat, int channel = 0)
{
if (channel == -1)
mat = mat.reshape(1);
CV_Assert(mat.depth() == CV_TYPE<T>::DEPTH);
CV_Assert(channel < mat.channels());
return thrust::make_permutation_iterator(thrust::device_pointer_cast(mat.ptr<T>(0) + channel),
thrust::make_transform_iterator(thrust::make_counting_iterator(mat.rows*mat.cols), step_functor<T>(mat.cols, mat.step / sizeof(T), mat.channels())));
}

@ -0,0 +1,88 @@
#include "Thrust_interop.hpp"
#include <thrust/transform.h>
#include <thrust/random.h>
#include <thrust/sort.h>
struct prg
{
float a, b;
__host__ __device__
prg(float _a = 0.f, float _b = 1.f) : a(_a), b(_b) {};
__host__ __device__
float operator()(const unsigned int n) const
{
thrust::default_random_engine rng;
thrust::uniform_real_distribution<float> dist(a, b);
rng.discard(n);
return dist(rng);
}
};
template<typename T> struct pred_eq
{
T value;
int channel;
__host__ __device__
pred_eq(T value_, int channel_ = 0) :value(value_), channel(channel_){}
__host__ __device__
bool operator()(const T val) const
{
return val == value;
}
template<int N>
__host__ __device__ bool operator()(const cv::Vec<T, N>& val)
{
if (channel < N)
return val.val[channel] == value;
return false;
}
};
int main(void)
{
// Generate a 2 channel row matrix with 100 elements. Set the first channel to be the element index, and the second to be a randomly
// generated value. Sort by the randomly generated value while maintaining index association.
{
cv::cuda::GpuMat d_idx(1, 100, CV_32SC2);
auto keyBegin = GpuMatBeginItr<int>(d_idx, 1);
auto keyEnd = GpuMatEndItr<int>(d_idx, 1);
auto idxBegin = GpuMatBeginItr<int>(d_idx, 0);
auto idxEnd = GpuMatEndItr<int>(d_idx, 0);
thrust::sequence(idxBegin, idxEnd);
thrust::transform(idxBegin, idxEnd, keyBegin, prg(0, 10));
thrust::sort_by_key(keyBegin, keyEnd, idxBegin);
cv::Mat h_idx(d_idx);
}
// Randomly fill a row matrix with 100 elements between -1 and 1
{
cv::cuda::GpuMat d_value(1, 100, CV_32F);
auto valueBegin = GpuMatBeginItr<float>(d_value);
auto valueEnd = GpuMatEndItr<float>(d_value);
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
cv::Mat h_value(d_value);
}
// OpenCV has count non zero, but what if you want to count a specific value?
{
cv::cuda::GpuMat d_value(1, 100, CV_32S);
d_value.setTo(cv::Scalar(0));
d_value.colRange(10, 50).setTo(cv::Scalar(15));
auto count = thrust::count(GpuMatBeginItr<int>(d_value), GpuMatEndItr<int>(d_value), 15);
std::cout << count << std::endl;
}
return 0;
}
Loading…
Cancel
Save