mirror of https://github.com/opencv/opencv.git
Merge pull request #24610 from jimmylaw21:dnn-onnx-add-group-norm-layer
dnn onnx: add group norm layer #24610 dnn onnx: add group norm layer Todo: - [x] speed up by multi-threading - [x] add perf - [x] add backend: OpenVINO - [x] add backend: CUDA - [x] add backend: OpenCL (no fp16) - [ ] add backend: CANN ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>pull/24857/head
parent
97c418ab86
commit
a7fa1e6f4b
13 changed files with 486 additions and 1 deletions
@ -0,0 +1,87 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_GROUP_NORM_HPP |
||||
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_GROUP_NORM_HPP |
||||
|
||||
#include "../../op_cuda.hpp" |
||||
|
||||
#include "../csl/stream.hpp" |
||||
#include "../csl/span.hpp" |
||||
#include "../csl/tensor.hpp" |
||||
#include "../csl/workspace.hpp" |
||||
|
||||
#include "../kernels/fill_copy.hpp" |
||||
#include "../kernels/mvn.hpp" |
||||
|
||||
#include <opencv2/core.hpp> |
||||
|
||||
#include <cstddef> |
||||
#include <vector> |
||||
#include <utility> |
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { |
||||
|
||||
template <class T> |
||||
class GroupNormOp final : public CUDABackendNode { |
||||
public: |
||||
using wrapper_type = GetCUDABackendWrapperType<T>; |
||||
|
||||
GroupNormOp(csl::Stream stream_, float epsilon_, size_t loops, size_t num_groups) |
||||
: stream(std::move(stream_)), epsilon(epsilon_), num_groups(num_groups) { |
||||
csl::WorkspaceBuilder builder; |
||||
builder.require<float>(loops * num_groups); // mean and stdev for each group
|
||||
builder.require<float>(loops * num_groups); |
||||
scratch_mem_in_bytes = builder.required_workspace_size(); |
||||
} |
||||
|
||||
void forward(const std::vector<cv::Ptr<BackendWrapper>>& inputs, |
||||
const std::vector<cv::Ptr<BackendWrapper>>& outputs, |
||||
csl::Workspace& workspace) override { |
||||
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>(); |
||||
auto scale_wrapper = inputs[1].dynamicCast<wrapper_type>(); |
||||
auto bias_wrapper = inputs[2].dynamicCast<wrapper_type>(); |
||||
|
||||
auto input = input_wrapper->getView(); |
||||
auto scale = scale_wrapper->getView(); |
||||
auto bias = bias_wrapper->getView(); |
||||
|
||||
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>(); |
||||
auto output = output_wrapper->getSpan(); |
||||
|
||||
auto C = input.get_axis_size(1); |
||||
auto loops = input.size_range(0, 2); |
||||
auto norm_size = input.size_range(2, input.rank()); |
||||
auto num_groups = this->num_groups; |
||||
auto group_size = C / num_groups; |
||||
if (norm_size == 1) { |
||||
kernels::fill<T>(stream, output, 0.f); |
||||
return; |
||||
} else { |
||||
auto ws_allocator = csl::WorkspaceAllocator(workspace); |
||||
|
||||
auto mean = ws_allocator.get_span<float>(loops / group_size); |
||||
kernels::fill<float>(stream, mean, 0.f); |
||||
|
||||
auto stdev = ws_allocator.get_span<float>(loops / group_size); |
||||
kernels::fill<float>(stream, stdev, 0.f); |
||||
|
||||
kernels::reduce_mean_sqr_sum<T>(stream, mean, stdev, input, norm_size * group_size); |
||||
kernels::compute_normalization_scale(stream, stdev, mean, stdev, norm_size * group_size, epsilon); |
||||
kernels::normalize_mean_variance_groupwise<T>(stream, output, input, scale, bias, mean, stdev, norm_size, C, num_groups, group_size); |
||||
} |
||||
} |
||||
|
||||
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; } |
||||
|
||||
private: |
||||
csl::Stream stream; |
||||
float epsilon; |
||||
std::size_t num_groups; |
||||
std::size_t scratch_mem_in_bytes; |
||||
}; |
||||
|
||||
}}} // cv::dnn::cuda4dnn
|
||||
|
||||
#endif // OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_GROUP_NORM_HPP
|
@ -0,0 +1,190 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include "../precomp.hpp" |
||||
#include <opencv2/dnn/shape_utils.hpp> |
||||
#include "./cpu_kernels/fast_norm.hpp" |
||||
|
||||
// CUDA backend
|
||||
#include "../op_cuda.hpp" |
||||
#ifdef HAVE_CUDA |
||||
#include "../cuda4dnn/primitives/group_norm.hpp" |
||||
using namespace cv::dnn::cuda4dnn; |
||||
#endif |
||||
|
||||
// OpenCL backend
|
||||
#ifdef HAVE_OPENCL |
||||
#include "../ocl4dnn/include/math_functions.hpp" |
||||
#include "opencl_kernels_dnn.hpp" |
||||
#endif |
||||
|
||||
namespace cv { |
||||
namespace dnn { |
||||
|
||||
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#GroupNormalization
|
||||
class GroupNormLayerImpl CV_FINAL : public GroupNormLayer { |
||||
public: |
||||
GroupNormLayerImpl(const LayerParams ¶ms) { |
||||
setParamsFrom(params); |
||||
|
||||
epsilon = params.get<float>("epsilon", 1e-5); |
||||
num_groups = params.get<int>("num_groups"); |
||||
} |
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE { |
||||
return backendId == DNN_BACKEND_OPENCV || |
||||
backendId == DNN_BACKEND_CUDA; |
||||
} |
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
||||
const int requiredOutputs, |
||||
std::vector<MatShape> &outputs, |
||||
std::vector<MatShape> &internals) const CV_OVERRIDE { |
||||
const auto &input = inputs[0]; |
||||
const auto &scale = inputs[1]; |
||||
const auto &bias = inputs[2]; |
||||
CV_CheckGE(input.size(), static_cast<size_t>(3), "DNN/GroupNorm: input dimension >= 3 is required"); |
||||
|
||||
int C = input[1]; |
||||
int scale_dim = std::accumulate(scale.begin(), scale.end(), 1, std::multiplies<int>()); |
||||
CV_CheckEQ(scale_dim, C, "DNN/InstanceNorm: scale must be a 1d tensor and match the channel of input"); |
||||
int bias_dim = std::accumulate(bias.begin(), bias.end(), 1, std::multiplies<int>()); |
||||
CV_CheckEQ(bias_dim, C, "DNN/InstanceNorm: bias must be a 1d tensor and match the channel of input"); |
||||
|
||||
outputs.assign(1, inputs[0]); |
||||
return false; |
||||
} |
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE { |
||||
CV_TRACE_FUNCTION(); |
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
||||
|
||||
if (inputs_arr.depth() == CV_16S) { |
||||
forward_fallback(inputs_arr, outputs_arr, internals_arr); |
||||
return; |
||||
} |
||||
|
||||
std::vector<Mat> inputs, outputs; |
||||
inputs_arr.getMatVector(inputs); |
||||
outputs_arr.getMatVector(outputs); |
||||
|
||||
const auto& input = inputs[0]; |
||||
const auto& scale = inputs[1]; |
||||
const auto& bias = inputs[2]; |
||||
|
||||
fastNormGroup(input, scale, bias, outputs[0], epsilon, num_groups); |
||||
} |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_) { |
||||
std::vector<UMat> inputs; |
||||
std::vector<UMat> outputs; |
||||
|
||||
inputs_.getUMatVector(inputs); |
||||
outputs_.getUMatVector(outputs); |
||||
|
||||
const auto &input = inputs[0], &scale = inputs[1], &bias = inputs[2]; |
||||
auto &output = outputs[0]; |
||||
|
||||
const auto input_shape = shape(input); |
||||
size_t N = input_shape[0], C = input_shape[1]; |
||||
size_t num_groups = this->num_groups; |
||||
size_t channels_per_group = C / num_groups; |
||||
size_t loops = N * num_groups, norm_size = static_cast<size_t>(total(input_shape, 2)) * channels_per_group; |
||||
float inv_norm_size = 1.f / norm_size; |
||||
|
||||
// no fp16 support
|
||||
if (input.depth() == CV_16S) { |
||||
return false; |
||||
} |
||||
|
||||
String base_opts = format(" -DT=float -DT4=float4 -Dconvert_T=convert_float4"); |
||||
|
||||
// Calculate mean
|
||||
UMat one = UMat::ones(norm_size, 1, CV_32F); |
||||
UMat mean = UMat(loops, 1, CV_32F); |
||||
UMat mean_square = UMat(loops, 1, CV_32F); |
||||
UMat tmp = UMat(loops, norm_size, CV_32F); |
||||
bool ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, loops, norm_size, inv_norm_size, |
||||
input, 0, one, 0, 0.f, mean, 0); |
||||
if (!ret) { |
||||
return false; |
||||
} |
||||
// Calculate mean_square
|
||||
int num_vector = (norm_size % 8 == 0) ? 8 : ((norm_size % 4 == 0) ? 4 : 1); |
||||
size_t global[] = {loops, static_cast<size_t>(norm_size / num_vector)}; |
||||
String build_opt = format(" -DNUM=%d", num_vector) + base_opts; |
||||
String mean_square_kernel_name = format("calc_mean%d", num_vector); |
||||
ocl::Kernel mean_square_kernel(mean_square_kernel_name.c_str(), ocl::dnn::mvn_oclsrc, build_opt + " -DKERNEL_MEAN"); |
||||
if (mean_square_kernel.empty()) { |
||||
return false; |
||||
} |
||||
mean_square_kernel.set(0, ocl::KernelArg::PtrReadOnly(input)); |
||||
mean_square_kernel.set(1, (int)loops); |
||||
mean_square_kernel.set(2, (int)norm_size); |
||||
mean_square_kernel.set(3, ocl::KernelArg::PtrReadOnly(mean)); |
||||
mean_square_kernel.set(4, ocl::KernelArg::PtrWriteOnly(tmp)); |
||||
ret = mean_square_kernel.run(2, global, NULL, false); |
||||
if (!ret) { |
||||
return false; |
||||
} |
||||
ret = ocl4dnn::ocl4dnnGEMV<float>(ocl4dnn::CblasNoTrans, loops, norm_size, inv_norm_size, |
||||
tmp, 0, one, 0, 0.f, mean_square, 0); |
||||
if (!ret) { |
||||
return false; |
||||
} |
||||
// Calculate group norm: output = scale * (x - mean) / sqrt(var + eps) + bias
|
||||
String mvn_group_kernel_name = format("mvn_group%d", num_vector); |
||||
build_opt += " -DNORM_VARIANCE -DKERNEL_MVN_GROUP"; |
||||
ocl::Kernel mvn_group_kernel(mvn_group_kernel_name.c_str(), ocl::dnn::mvn_oclsrc, build_opt); |
||||
if (mvn_group_kernel.empty()) { |
||||
return false; |
||||
} |
||||
mvn_group_kernel.set(0, ocl::KernelArg::PtrReadOnly(input)); |
||||
mvn_group_kernel.set(1, (int)loops); |
||||
mvn_group_kernel.set(2, (int)norm_size); |
||||
mvn_group_kernel.set(3, (float)epsilon); |
||||
mvn_group_kernel.set(4, ocl::KernelArg::PtrReadOnly(mean)); |
||||
mvn_group_kernel.set(5, ocl::KernelArg::PtrReadOnly(mean_square)); |
||||
mvn_group_kernel.set(6, ocl::KernelArg::PtrReadOnly(scale)); |
||||
mvn_group_kernel.set(7, ocl::KernelArg::PtrReadOnly(bias)); |
||||
mvn_group_kernel.set(8, (int)C); |
||||
mvn_group_kernel.set(9, (int)num_groups); |
||||
mvn_group_kernel.set(10, (float)0.f); |
||||
mvn_group_kernel.set(11, ocl::KernelArg::PtrWriteOnly(output)); |
||||
ret = mvn_group_kernel.run(2, global, NULL, false); |
||||
if (!ret) { |
||||
return false; |
||||
} |
||||
|
||||
return true; |
||||
} |
||||
#endif |
||||
|
||||
#ifdef HAVE_CUDA |
||||
Ptr<BackendNode> initCUDA(void *context_, |
||||
const std::vector<Ptr<BackendWrapper>>& inputs, |
||||
const std::vector<Ptr<BackendWrapper>>& outputs) override { |
||||
auto context = reinterpret_cast<csl::CSLContext*>(context_); |
||||
|
||||
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>(); |
||||
auto input_shape = input_wrapper->getShape(); |
||||
size_t N = input_shape[0]; |
||||
size_t num_groups = this->num_groups; |
||||
size_t loops = N * num_groups; |
||||
|
||||
return make_cuda_node<cuda4dnn::GroupNormOp>(preferableTarget, std::move(context->stream), epsilon, loops, num_groups); |
||||
} |
||||
#endif // HAVE_CUDA
|
||||
|
||||
private: |
||||
float epsilon; |
||||
size_t num_groups; |
||||
}; |
||||
|
||||
Ptr<GroupNormLayer> GroupNormLayer::create(const LayerParams ¶ms) { |
||||
return Ptr<GroupNormLayer>(new GroupNormLayerImpl(params)); |
||||
} |
||||
|
||||
}} // cv::dnn
|
Loading…
Reference in new issue