Storing PCA components and One Way descriptors in one yml file.

pull/13383/head
Ilya Lysenkov 15 years ago
parent 08c377cb48
commit a702e5b2dc
  1. 34
      modules/features2d/include/opencv2/features2d/features2d.hpp
  2. 10
      modules/features2d/src/descriptors.cpp
  3. 246
      modules/features2d/src/oneway.cpp
  4. 214
      samples/c/one_way_sample.cpp
  5. 2
      samples/c/one_way_train_images.txt

@ -1024,6 +1024,12 @@ public:
const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1, const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1,
int pca_dim_high = 100, int pca_dim_low = 100); int pca_dim_high = 100, int pca_dim_low = 100);
OneWayDescriptorBase(CvSize patch_size, int pose_count, const string &pca_filename, const string &train_path = string(), const string &images_list = string(),
int pyr_levels = 1,
int pca_dim_high = 100, int pca_dim_low = 100);
~OneWayDescriptorBase(); ~OneWayDescriptorBase();
// Allocate: allocates memory for a given number of descriptors // Allocate: allocates memory for a given number of descriptors
@ -1111,6 +1117,15 @@ public:
// - filename: output filename // - filename: output filename
void SavePCADescriptors(const char* filename); void SavePCADescriptors(const char* filename);
// SavePCADescriptors: saves PCA descriptors to a file storage
// - fs: output file storage
void SavePCADescriptors(CvFileStorage* fs);
// GeneratePCA: calculate and save PCA components and descriptors
// - img_path: path to training PCA images directory
// - images_list: filename with filenames of training PCA images
void GeneratePCA(const char* img_path, const char* images_list);
// SetPCAHigh: sets the high resolution pca matrices (copied to internal structures) // SetPCAHigh: sets the high resolution pca matrices (copied to internal structures)
void SetPCAHigh(CvMat* avg, CvMat* eigenvectors); void SetPCAHigh(CvMat* avg, CvMat* eigenvectors);
@ -1129,6 +1144,8 @@ public:
void ConvertDescriptorsArrayToTree(); // Converting pca_descriptors array to KD tree void ConvertDescriptorsArrayToTree(); // Converting pca_descriptors array to KD tree
// GetPCAFilename: get default PCA filename
static string GetPCAFilename () { return "pca.yml"; }
protected: protected:
CvSize m_patch_size; // patch size CvSize m_patch_size; // patch size
@ -1151,7 +1168,6 @@ protected:
int m_pca_dim_low; int m_pca_dim_low;
int m_pyr_levels; int m_pyr_levels;
}; };
class CV_EXPORTS OneWayDescriptorObject : public OneWayDescriptorBase class CV_EXPORTS OneWayDescriptorObject : public OneWayDescriptorBase
@ -1168,6 +1184,11 @@ public:
OneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path, const char* pca_config, OneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path, const char* pca_config,
const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1); const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1);
OneWayDescriptorObject(CvSize patch_size, int pose_count, const string &pca_filename,
const string &train_path = string (), const string &images_list = string (), int pyr_levels = 1);
~OneWayDescriptorObject(); ~OneWayDescriptorObject();
// Allocate: allocates memory for a given number of features // Allocate: allocates memory for a given number of features
@ -1690,19 +1711,20 @@ public:
Params( int _poseCount = POSE_COUNT, Params( int _poseCount = POSE_COUNT,
Size _patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT), Size _patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT),
string _pcaFilename = string (),
string _trainPath = string(), string _trainPath = string(),
string _pcaConfig = string(), string _pcaHrConfig = string(), string _trainImagesList = string(),
string _pcaDescConfig = string(),
float _minScale = GET_MIN_SCALE(), float _maxScale = GET_MAX_SCALE(), float _minScale = GET_MIN_SCALE(), float _maxScale = GET_MAX_SCALE(),
float _stepScale = GET_STEP_SCALE() ) : float _stepScale = GET_STEP_SCALE() ) :
poseCount(_poseCount), patchSize(_patchSize), trainPath(_trainPath), poseCount(_poseCount), patchSize(_patchSize), pcaFilename(_pcaFilename),
pcaConfig(_pcaConfig), pcaHrConfig(_pcaHrConfig), pcaDescConfig(_pcaDescConfig), trainPath(_trainPath), trainImagesList(_trainImagesList),
minScale(_minScale), maxScale(_maxScale), stepScale(_stepScale) {} minScale(_minScale), maxScale(_maxScale), stepScale(_stepScale) {}
int poseCount; int poseCount;
Size patchSize; Size patchSize;
string pcaFilename;
string trainPath; string trainPath;
string pcaConfig, pcaHrConfig, pcaDescConfig; string trainImagesList;
float minScale, maxScale, stepScale; float minScale, maxScale, stepScale;
}; };

@ -203,9 +203,8 @@ void OneWayDescriptorMatch::initialize( const Params& _params)
void OneWayDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints ) void OneWayDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
{ {
if( base.empty() ) if( base.empty() )
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.trainPath.c_str(), base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename,
params.pcaConfig.c_str(), params.pcaHrConfig.c_str(), params.trainPath, params.trainImagesList);
params.pcaDescConfig.c_str());
size_t trainFeatureCount = keypoints.size(); size_t trainFeatureCount = keypoints.size();
@ -225,9 +224,8 @@ void OneWayDescriptorMatch::add( const Mat& image, vector<KeyPoint>& keypoints )
void OneWayDescriptorMatch::add( KeyPointCollection& keypoints ) void OneWayDescriptorMatch::add( KeyPointCollection& keypoints )
{ {
if( base.empty() ) if( base.empty() )
base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.trainPath.c_str(), base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename,
params.pcaConfig.c_str(), params.pcaHrConfig.c_str(), params.trainPath, params.trainImagesList);
params.pcaDescConfig.c_str());
size_t trainFeatureCount = keypoints.calcKeypointCount(); size_t trainFeatureCount = keypoints.calcKeypointCount();

@ -139,7 +139,14 @@ namespace cv{
}*/ }*/
} }
void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors); void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors, const char *postfix = "");
void savePCAFeatures(FileStorage &fs, const char* postfix, CvMat* avg, CvMat* eigenvectors);
void calcPCAFeatures(vector<IplImage*>& patches, FileStorage &fs, const char* postfix, CvMat** avg,
CvMat** eigenvectors);
void loadPCAFeatures(const char* path, const char* images_list, vector<IplImage*>& patches, CvSize patch_size);
void generatePCAFeatures(const char* path, const char* img_filename, FileStorage& fs, const char* postfix,
CvSize patch_size, CvMat** avg, CvMat** eigenvectors);
void eigenvector2image(CvMat* eigenvector, IplImage* img); void eigenvector2image(CvMat* eigenvector, IplImage* img);
void FindOneWayDescriptor(int desc_count, const OneWayDescriptor* descriptors, IplImage* patch, int& desc_idx, int& pose_idx, float& distance, void FindOneWayDescriptor(int desc_count, const OneWayDescriptor* descriptors, IplImage* patch, int& desc_idx, int& pose_idx, float& distance,
@ -1261,7 +1268,49 @@ namespace cv{
// SavePCADescriptors("./pca_descriptors.yml"); // SavePCADescriptors("./pca_descriptors.yml");
} }
OneWayDescriptorBase::OneWayDescriptorBase(CvSize patch_size, int pose_count, const string &pca_filename,
const string &train_path, const string &images_list, int pyr_levels,
int pca_dim_high, int pca_dim_low) : m_pca_dim_high(pca_dim_high), m_pca_dim_low(pca_dim_low)
{
// m_pca_descriptors_matrix = 0;
m_patch_size = patch_size;
m_pose_count = pose_count;
m_pyr_levels = pyr_levels;
m_poses = 0;
m_transforms = 0;
m_pca_avg = 0;
m_pca_eigenvectors = 0;
m_pca_hr_avg = 0;
m_pca_hr_eigenvectors = 0;
m_pca_descriptors = 0;
m_descriptors = 0;
CvFileStorage* fs = cvOpenFileStorage(pca_filename.c_str(), NULL, CV_STORAGE_READ);
if (fs != 0)
{
cvReleaseFileStorage(&fs);
readPCAFeatures(pca_filename.c_str(), &m_pca_avg, &m_pca_eigenvectors, "_lr");
readPCAFeatures(pca_filename.c_str(), &m_pca_hr_avg, &m_pca_hr_eigenvectors, "_hr");
m_pca_descriptors = new OneWayDescriptor[m_pca_dim_high + 1];
#if !defined(_GH_REGIONS)
LoadPCADescriptors(pca_filename.c_str());
#endif //_GH_REGIONS
}
else
{
GeneratePCA(train_path.c_str(), images_list.c_str());
m_pca_descriptors = new OneWayDescriptor[m_pca_dim_high + 1];
char pca_default_filename[1024];
sprintf(pca_default_filename, "%s/%s", train_path.c_str(), GetPCAFilename().c_str());
LoadPCADescriptors(pca_default_filename);
}
}
OneWayDescriptorBase::~OneWayDescriptorBase() OneWayDescriptorBase::~OneWayDescriptorBase()
{ {
cvReleaseMat(&m_pca_avg); cvReleaseMat(&m_pca_avg);
@ -1554,20 +1603,170 @@ namespace cv{
return 1; return 1;
} }
void savePCAFeatures(FileStorage &fs, const char* postfix, CvMat* avg, CvMat* eigenvectors)
{
char buf[1024];
sprintf(buf, "avg_%s", postfix);
fs.writeObj(buf, avg);
sprintf(buf, "eigenvectors_%s", postfix);
fs.writeObj(buf, eigenvectors);
}
void calcPCAFeatures(vector<IplImage*>& patches, FileStorage &fs, const char* postfix, CvMat** avg,
CvMat** eigenvectors)
{
int width = patches[0]->width;
int height = patches[0]->height;
int length = width * height;
int patch_count = (int)patches.size();
CvMat* data = cvCreateMat(patch_count, length, CV_32FC1);
*avg = cvCreateMat(1, length, CV_32FC1);
CvMat* eigenvalues = cvCreateMat(1, length, CV_32FC1);
*eigenvectors = cvCreateMat(length, length, CV_32FC1);
for (int i = 0; i < patch_count; i++)
{
float sum = cvSum(patches[i]).val[0];
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
*((float*)(data->data.ptr + data->step * i) + y * width + x)
= (float)(unsigned char)patches[i]->imageData[y * patches[i]->widthStep + x] / sum;
}
}
}
//printf("Calculating PCA...");
cvCalcPCA(data, *avg, eigenvalues, *eigenvectors, CV_PCA_DATA_AS_ROW);
//printf("done\n");
// save pca data
savePCAFeatures(fs, postfix, *avg, *eigenvectors);
cvReleaseMat(&data);
cvReleaseMat(&eigenvalues);
}
void loadPCAFeatures(const char* path, const char* images_list, vector<IplImage*>& patches, CvSize patch_size)
{
char images_filename[1024];
sprintf(images_filename, "%s/%s", path, images_list);
FILE *pFile = fopen(images_filename, "r");
if (pFile == 0)
{
printf("Cannot open images list file %s\n", images_filename);
return;
}
while (!feof(pFile))
{
char imagename[1024];
if (fscanf(pFile, "%s", imagename) <= 0)
{
break;
}
char filename[1024];
sprintf(filename, "%s/%s", path, imagename);
//printf("Reading image %s...", filename);
IplImage* img = cvLoadImage(filename, CV_LOAD_IMAGE_GRAYSCALE);
//printf("done\n");
vector<KeyPoint> features;
SURF surf_extractor(1.0f);
//printf("Extracting SURF features...");
surf_extractor(img, Mat(), features);
//printf("done\n");
for (int j = 0; j < (int)features.size(); j++)
{
int patch_width = patch_size.width;
int patch_height = patch_size.height;
CvPoint center = features[j].pt;
CvRect roi = cvRect(center.x - patch_width / 2, center.y - patch_height / 2, patch_width, patch_height);
cvSetImageROI(img, roi);
roi = cvGetImageROI(img);
if (roi.width != patch_width || roi.height != patch_height)
{
continue;
}
IplImage* patch = cvCreateImage(cvSize(patch_width, patch_height), IPL_DEPTH_8U, 1);
cvCopy(img, patch);
patches.push_back(patch);
cvResetImageROI(img);
}
//printf("Completed file, extracted %d features\n", (int)features.size());
cvReleaseImage(&img);
}
fclose(pFile);
}
void generatePCAFeatures(const char* path, const char* img_filename, FileStorage& fs, const char* postfix,
CvSize patch_size, CvMat** avg, CvMat** eigenvectors)
{
vector<IplImage*> patches;
loadPCAFeatures(path, img_filename, patches, patch_size);
calcPCAFeatures(patches, fs, postfix, avg, eigenvectors);
}
void OneWayDescriptorBase::GeneratePCA(const char* img_path, const char* images_list)
{
char pca_filename[1024];
sprintf(pca_filename, "%s/%s", img_path, GetPCAFilename().c_str());
FileStorage fs = FileStorage(pca_filename, FileStorage::WRITE);
generatePCAFeatures(img_path, images_list, fs, "hr", m_patch_size, &m_pca_hr_avg, &m_pca_hr_eigenvectors);
generatePCAFeatures(img_path, images_list, fs, "lr", cvSize(m_patch_size.width / 2, m_patch_size.height / 2),
&m_pca_avg, &m_pca_eigenvectors);
const int pose_count = 500;
OneWayDescriptorBase descriptors(m_patch_size, pose_count);
descriptors.SetPCAHigh(m_pca_hr_avg, m_pca_hr_eigenvectors);
descriptors.SetPCALow(m_pca_avg, m_pca_eigenvectors);
printf("Calculating %d PCA descriptors (you can grab a coffee, this will take a while)...\n",
descriptors.GetPCADimHigh());
descriptors.InitializePoseTransforms();
descriptors.CreatePCADescriptors();
descriptors.SavePCADescriptors(*fs);
fs.release();
}
void OneWayDescriptorBase::SavePCADescriptors(const char* filename) void OneWayDescriptorBase::SavePCADescriptors(const char* filename)
{ {
CvMemStorage* storage = cvCreateMemStorage(); CvMemStorage* storage = cvCreateMemStorage();
CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_WRITE); CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_WRITE);
SavePCADescriptors (fs);
cvReleaseMemStorage(&storage);
cvReleaseFileStorage(&fs);
}
void OneWayDescriptorBase::SavePCADescriptors(CvFileStorage *fs)
{
cvWriteInt(fs, "pca components number", m_pca_dim_high); cvWriteInt(fs, "pca components number", m_pca_dim_high);
cvWriteComment(fs, "The first component is the average Vector, so the total number of components is <pca components number> + 1", 0); cvWriteComment(
fs,
"The first component is the average Vector, so the total number of components is <pca components number> + 1",
0);
cvWriteInt(fs, "patch width", m_patch_size.width); cvWriteInt(fs, "patch width", m_patch_size.width);
cvWriteInt(fs, "patch height", m_patch_size.height); cvWriteInt(fs, "patch height", m_patch_size.height);
// pack the affine transforms into a single CvMat and write them // pack the affine transforms into a single CvMat and write them
CvMat* poses = cvCreateMat(m_pose_count, 4, CV_32FC1); CvMat* poses = cvCreateMat(m_pose_count, 4, CV_32FC1);
for(int i = 0; i < m_pose_count; i++) for (int i = 0; i < m_pose_count; i++)
{ {
cvmSet(poses, i, 0, m_poses[i].phi); cvmSet(poses, i, 0, m_poses[i].phi);
cvmSet(poses, i, 1, m_poses[i].theta); cvmSet(poses, i, 1, m_poses[i].theta);
@ -1576,18 +1775,16 @@ namespace cv{
} }
cvWrite(fs, "affine poses", poses); cvWrite(fs, "affine poses", poses);
cvReleaseMat(&poses); cvReleaseMat(&poses);
for(int i = 0; i < m_pca_dim_high + 1; i++) for (int i = 0; i < m_pca_dim_high + 1; i++)
{ {
char buf[1024]; char buf[1024];
sprintf(buf, "descriptor for pca component %d", i); sprintf(buf, "descriptor for pca component %d", i);
m_pca_descriptors[i].Write(fs, buf); m_pca_descriptors[i].Write(fs, buf);
} }
cvReleaseMemStorage(&storage);
cvReleaseFileStorage(&fs);
} }
void OneWayDescriptorBase::Allocate(int train_feature_count) void OneWayDescriptorBase::Allocate(int train_feature_count)
{ {
m_train_feature_count = train_feature_count; m_train_feature_count = train_feature_count;
@ -1728,6 +1925,14 @@ namespace cv{
m_part_id = 0; m_part_id = 0;
} }
OneWayDescriptorObject::OneWayDescriptorObject(CvSize patch_size, int pose_count, const string &pca_filename,
const string &train_path, const string &images_list, int pyr_levels) :
OneWayDescriptorBase(patch_size, pose_count, pca_filename, train_path, images_list, pyr_levels)
{
m_part_id = 0;
}
OneWayDescriptorObject::~OneWayDescriptorObject() OneWayDescriptorObject::~OneWayDescriptorObject()
{ {
delete []m_part_id; delete []m_part_id;
@ -1771,24 +1976,27 @@ namespace cv{
} }
} }
void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors) void readPCAFeatures(const char* filename, CvMat** avg, CvMat** eigenvectors, const char* postfix)
{ {
CvMemStorage* storage = cvCreateMemStorage(); CvMemStorage* storage = cvCreateMemStorage();
CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_READ); CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_READ);
if(!fs) if (!fs)
{ {
printf("Cannot open file %s! Exiting!", filename); printf("Cannot open file %s! Exiting!", filename);
cvReleaseMemStorage(&storage); cvReleaseMemStorage(&storage);
} }
CvFileNode* node = cvGetFileNodeByName(fs, 0, "avg"); char buf[1024];
sprintf(buf, "avg%s", postfix);
CvFileNode* node = cvGetFileNodeByName(fs, 0, buf);
CvMat* _avg = (CvMat*)cvRead(fs, node); CvMat* _avg = (CvMat*)cvRead(fs, node);
node = cvGetFileNodeByName(fs, 0, "eigenvectors"); sprintf(buf, "eigenvectors%s", postfix);
node = cvGetFileNodeByName(fs, 0, buf);
CvMat* _eigenvectors = (CvMat*)cvRead(fs, node); CvMat* _eigenvectors = (CvMat*)cvRead(fs, node);
*avg = cvCloneMat(_avg); *avg = cvCloneMat(_avg);
*eigenvectors = cvCloneMat(_eigenvectors); *eigenvectors = cvCloneMat(_eigenvectors);
cvReleaseMat(&_avg); cvReleaseMat(&_avg);
cvReleaseMat(&_eigenvectors); cvReleaseMat(&_eigenvectors);
cvReleaseFileStorage(&fs); cvReleaseFileStorage(&fs);

@ -15,42 +15,26 @@
using namespace cv; using namespace cv;
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
IplImage* img2, const vector<KeyPoint>& features2, const vector<int>& desc_idx); const vector<KeyPoint>& features2, const vector<int>& desc_idx);
void generatePCADescriptors(const char* img_path, const char* pca_low_filename, const char* pca_high_filename,
const char* pca_desc_filename, CvSize patch_size);
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
const char pca_high_filename[] = "pca_hr.yml"; const char images_list[] = "one_way_train_images.txt";
const char pca_low_filename[] = "pca_lr.yml";
const char pca_desc_filename[] = "pca_descriptors.yml";
const CvSize patch_size = cvSize(24, 24); const CvSize patch_size = cvSize(24, 24);
const int pose_count = 50; const int pose_count = 50;
if(argc != 3 && argc != 4) if (argc != 3 && argc != 4)
{ {
printf("Format: \n./one_way_sample [path_to_samples] [image1] [image2]\n"); printf("Format: \n./one_way_sample [path_to_samples] [image1] [image2]\n");
printf("For example: ./one_way_sample ../../../opencv/samples/c scene_l.bmp scene_r.bmp\n"); printf("For example: ./one_way_sample ../../../opencv/samples/c scene_l.bmp scene_r.bmp\n");
return 0; return 0;
} }
std::string path_name = argv[1]; std::string path_name = argv[1];
std::string img1_name = path_name + "/" + std::string(argv[2]); std::string img1_name = path_name + "/" + std::string(argv[2]);
std::string img2_name = path_name + "/" + std::string(argv[3]); std::string img2_name = path_name + "/" + std::string(argv[3]);
CvFileStorage* fs = cvOpenFileStorage("pca_hr.yml", NULL, CV_STORAGE_READ);
if(fs == NULL)
{
printf("PCA data is not found, starting training...\n");
generatePCADescriptors(path_name.c_str(), pca_low_filename, pca_high_filename, pca_desc_filename, patch_size);
}
else
{
cvReleaseFileStorage(&fs);
}
printf("Reading the images...\n"); printf("Reading the images...\n");
IplImage* img1 = cvLoadImage(img1_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE); IplImage* img1 = cvLoadImage(img1_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
IplImage* img2 = cvLoadImage(img2_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE); IplImage* img2 = cvLoadImage(img2_name.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
@ -58,213 +42,69 @@ int main(int argc, char** argv)
// extract keypoints from the first image // extract keypoints from the first image
SURF surf_extractor(5.0e3); SURF surf_extractor(5.0e3);
vector<KeyPoint> keypoints1; vector<KeyPoint> keypoints1;
#if 1
Mat _img1(img1); // printf("Extracting keypoints\n");
vector<Point2f> corners;
goodFeaturesToTrack(_img1, corners, 200, 0.01, 20);
for(size_t i = 0; i < corners.size(); i++)
{
KeyPoint p;
p.pt = corners[i];
keypoints1.push_back(p);
}
#else
// printf("Extracting keypoints\n");
surf_extractor(img1, Mat(), keypoints1); surf_extractor(img1, Mat(), keypoints1);
#endif
printf("Extracted %d keypoints...\n", (int)keypoints1.size()); printf("Extracted %d keypoints...\n", (int)keypoints1.size());
printf("Training one way descriptors..."); printf("Training one way descriptors... \n");
// create descriptors // create descriptors
OneWayDescriptorBase descriptors(patch_size, pose_count, ".", pca_low_filename, pca_high_filename, pca_desc_filename); OneWayDescriptorBase descriptors(patch_size, pose_count, OneWayDescriptorBase::GetPCAFilename(), path_name,
images_list);
descriptors.CreateDescriptorsFromImage(img1, keypoints1); descriptors.CreateDescriptorsFromImage(img1, keypoints1);
printf("done\n"); printf("done\n");
// extract keypoints from the second image // extract keypoints from the second image
vector<KeyPoint> keypoints2; vector<KeyPoint> keypoints2;
surf_extractor(img2, Mat(), keypoints2); surf_extractor(img2, Mat(), keypoints2);
printf("Extracted %d keypoints from the second image...\n", (int)keypoints2.size()); printf("Extracted %d keypoints from the second image...\n", (int)keypoints2.size());
printf("Finding nearest neighbors..."); printf("Finding nearest neighbors...");
// find NN for each of keypoints2 in keypoints1 // find NN for each of keypoints2 in keypoints1
vector<int> desc_idx; vector<int> desc_idx;
desc_idx.resize(keypoints2.size()); desc_idx.resize(keypoints2.size());
for(size_t i = 0; i < keypoints2.size(); i++) for (size_t i = 0; i < keypoints2.size(); i++)
{ {
int pose_idx = 0; int pose_idx = 0;
float distance = 0; float distance = 0;
descriptors.FindDescriptor(img2, keypoints2[i].pt, desc_idx[i], pose_idx, distance); descriptors.FindDescriptor(img2, keypoints2[i].pt, desc_idx[i], pose_idx, distance);
} }
printf("done\n"); printf("done\n");
IplImage* img_corr = DrawCorrespondences(img1, keypoints1, img2, keypoints2, desc_idx); IplImage* img_corr = DrawCorrespondences(img1, keypoints1, img2, keypoints2, desc_idx);
cvNamedWindow("correspondences", 1); cvNamedWindow("correspondences", 1);
cvShowImage("correspondences", img_corr); cvShowImage("correspondences", img_corr);
cvWaitKey(0); cvWaitKey(0);
cvReleaseImage(&img1); cvReleaseImage(&img1);
cvReleaseImage(&img2); cvReleaseImage(&img2);
cvReleaseImage(&img_corr); cvReleaseImage(&img_corr);
} }
IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2, const vector<KeyPoint>& features2, const vector<int>& desc_idx) IplImage* DrawCorrespondences(IplImage* img1, const vector<KeyPoint>& features1, IplImage* img2,
const vector<KeyPoint>& features2, const vector<int>& desc_idx)
{ {
IplImage* img_corr = cvCreateImage(cvSize(img1->width + img2->width, MAX(img1->height, img2->height)), IPL_DEPTH_8U, 3); IplImage* img_corr = cvCreateImage(cvSize(img1->width + img2->width, MAX(img1->height, img2->height)),
IPL_DEPTH_8U, 3);
cvSetImageROI(img_corr, cvRect(0, 0, img1->width, img1->height)); cvSetImageROI(img_corr, cvRect(0, 0, img1->width, img1->height));
cvCvtColor(img1, img_corr, CV_GRAY2RGB); cvCvtColor(img1, img_corr, CV_GRAY2RGB);
cvSetImageROI(img_corr, cvRect(img1->width, 0, img2->width, img2->height)); cvSetImageROI(img_corr, cvRect(img1->width, 0, img2->width, img2->height));
cvCvtColor(img2, img_corr, CV_GRAY2RGB); cvCvtColor(img2, img_corr, CV_GRAY2RGB);
cvResetImageROI(img_corr); cvResetImageROI(img_corr);
for(size_t i = 0; i < features1.size(); i++) for (size_t i = 0; i < features1.size(); i++)
{ {
cvCircle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0)); cvCircle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0));
} }
for(size_t i = 0; i < features2.size(); i++) for (size_t i = 0; i < features2.size(); i++)
{ {
CvPoint pt = cvPoint(features2[i].pt.x + img1->width, features2[i].pt.y); CvPoint pt = cvPoint(features2[i].pt.x + img1->width, features2[i].pt.y);
cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0)); cvCircle(img_corr, pt, 3, CV_RGB(255, 0, 0));
cvLine(img_corr, features1[desc_idx[i]].pt, pt, CV_RGB(0, 255, 0)); cvLine(img_corr, features1[desc_idx[i]].pt, pt, CV_RGB(0, 255, 0));
} }
return img_corr;
}
/*
* pca_features
*
*
*/
void savePCAFeatures(const char* filename, CvMat* avg, CvMat* eigenvectors)
{
CvMemStorage* storage = cvCreateMemStorage();
CvFileStorage* fs = cvOpenFileStorage(filename, storage, CV_STORAGE_WRITE);
cvWrite(fs, "avg", avg);
cvWrite(fs, "eigenvectors", eigenvectors);
cvReleaseFileStorage(&fs);
cvReleaseMemStorage(&storage);
}
void calcPCAFeatures(vector<IplImage*>& patches, const char* filename, CvMat** avg, CvMat** eigenvectors)
{
int width = patches[0]->width;
int height = patches[0]->height;
int length = width*height;
int patch_count = (int)patches.size();
CvMat* data = cvCreateMat(patch_count, length, CV_32FC1);
*avg = cvCreateMat(1, length, CV_32FC1);
CvMat* eigenvalues = cvCreateMat(1, length, CV_32FC1);
*eigenvectors = cvCreateMat(length, length, CV_32FC1);
for(int i = 0; i < patch_count; i++)
{
float sum = cvSum(patches[i]).val[0];
for(int y = 0; y < height; y++)
{
for(int x = 0; x < width; x++)
{
*((float*)(data->data.ptr + data->step*i) + y*width + x) = (float)(unsigned char)patches[i]->imageData[y*patches[i]->widthStep + x]/sum;
}
}
}
printf("Calculating PCA...");
cvCalcPCA(data, *avg, eigenvalues, *eigenvectors, CV_PCA_DATA_AS_ROW);
printf("done\n");
// save pca data
savePCAFeatures(filename, *avg, *eigenvectors);
cvReleaseMat(&data);
cvReleaseMat(&eigenvalues);
}
void loadPCAFeatures(const char* path, vector<IplImage*>& patches, CvSize patch_size)
{
const int file_count = 2;
for(int i = 0; i < file_count; i++)
{
char buf[1024];
sprintf(buf, "%s/one_way_train_%04d.jpg", path, i);
printf("Reading image %s...", buf);
IplImage* img = cvLoadImage(buf, CV_LOAD_IMAGE_GRAYSCALE);
printf("done\n");
vector<KeyPoint> features;
SURF surf_extractor(1.0f);
printf("Extracting SURF features...");
surf_extractor(img, Mat(), features);
printf("done\n");
for(int j = 0; j < (int)features.size(); j++)
{
int patch_width = patch_size.width;
int patch_height = patch_size.height;
CvPoint center = features[j].pt;
CvRect roi = cvRect(center.x - patch_width/2, center.y - patch_height/2, patch_width, patch_height);
cvSetImageROI(img, roi);
roi = cvGetImageROI(img);
if(roi.width != patch_width || roi.height != patch_height)
{
continue;
}
IplImage* patch = cvCreateImage(cvSize(patch_width, patch_height), IPL_DEPTH_8U, 1);
cvCopy(img, patch);
patches.push_back(patch);
cvResetImageROI(img);
}
printf("Completed file %d, extracted %d features\n", i, (int)features.size());
cvReleaseImage(&img);
}
}
void generatePCAFeatures(const char* img_filename, const char* pca_filename, CvSize patch_size, CvMat** avg, CvMat** eigenvectors)
{
vector<IplImage*> patches;
loadPCAFeatures(img_filename, patches, patch_size);
calcPCAFeatures(patches, pca_filename, avg, eigenvectors);
}
void generatePCADescriptors(const char* img_path, const char* pca_low_filename, const char* pca_high_filename,
const char* pca_desc_filename, CvSize patch_size)
{
CvMat* avg_hr;
CvMat* eigenvectors_hr;
generatePCAFeatures(img_path, pca_high_filename, patch_size, &avg_hr, &eigenvectors_hr);
CvMat* avg_lr; return img_corr;
CvMat* eigenvectors_lr;
generatePCAFeatures(img_path, pca_low_filename, cvSize(patch_size.width/2, patch_size.height/2),
&avg_lr, &eigenvectors_lr);
const int pose_count = 500;
OneWayDescriptorBase descriptors(patch_size, pose_count);
descriptors.SetPCAHigh(avg_hr, eigenvectors_hr);
descriptors.SetPCALow(avg_lr, eigenvectors_lr);
printf("Calculating %d PCA descriptors (you can grab a coffee, this will take a while)...\n", descriptors.GetPCADimHigh());
descriptors.InitializePoseTransforms();
descriptors.CreatePCADescriptors();
descriptors.SavePCADescriptors(pca_desc_filename);
cvReleaseMat(&avg_hr);
cvReleaseMat(&eigenvectors_hr);
cvReleaseMat(&avg_lr);
cvReleaseMat(&eigenvectors_lr);
} }

@ -0,0 +1,2 @@
one_way_train_0000.jpg
one_way_train_0001.jpg
Loading…
Cancel
Save