|
|
|
@ -20,6 +20,14 @@ namespace opencv_test { namespace { |
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::dnn; |
|
|
|
|
|
|
|
|
|
class Test_TFLite : public DNNTestLayer { |
|
|
|
|
public: |
|
|
|
|
void testModel(Net& net, const std::string& modelName, const Mat& input, double l1 = 0, double lInf = 0); |
|
|
|
|
void testModel(const std::string& modelName, const Mat& input, double l1 = 0, double lInf = 0); |
|
|
|
|
void testModel(const std::string& modelName, const Size& inpSize, double l1 = 0, double lInf = 0); |
|
|
|
|
void testLayer(const std::string& modelName, double l1 = 0, double lInf = 0); |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
void testInputShapes(const Net& net, const std::vector<Mat>& inps) { |
|
|
|
|
std::vector<MatShape> inLayerShapes; |
|
|
|
|
std::vector<MatShape> outLayerShapes; |
|
|
|
@ -31,8 +39,14 @@ void testInputShapes(const Net& net, const std::vector<Mat>& inps) { |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void testModel(Net& net, const std::string& modelName, const Mat& input, double l1 = 1e-5, double lInf = 1e-4) |
|
|
|
|
void Test_TFLite::testModel(Net& net, const std::string& modelName, const Mat& input, double l1, double lInf) |
|
|
|
|
{ |
|
|
|
|
l1 = l1 ? l1 : default_l1; |
|
|
|
|
lInf = lInf ? lInf : default_lInf; |
|
|
|
|
|
|
|
|
|
net.setPreferableBackend(backend); |
|
|
|
|
net.setPreferableTarget(target); |
|
|
|
|
|
|
|
|
|
testInputShapes(net, {input}); |
|
|
|
|
net.setInput(input); |
|
|
|
|
|
|
|
|
@ -48,20 +62,20 @@ void testModel(Net& net, const std::string& modelName, const Mat& input, double |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void testModel(const std::string& modelName, const Mat& input, double l1 = 1e-5, double lInf = 1e-4) |
|
|
|
|
void Test_TFLite::testModel(const std::string& modelName, const Mat& input, double l1, double lInf) |
|
|
|
|
{ |
|
|
|
|
Net net = readNet(findDataFile("dnn/tflite/" + modelName + ".tflite", false)); |
|
|
|
|
testModel(net, modelName, input, l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void testModel(const std::string& modelName, const Size& inpSize, double l1 = 1e-5, double lInf = 1e-4) |
|
|
|
|
void Test_TFLite::testModel(const std::string& modelName, const Size& inpSize, double l1, double lInf) |
|
|
|
|
{ |
|
|
|
|
Mat input = imread(findDataFile("cv/shared/lena.png")); |
|
|
|
|
input = blobFromImage(input, 1.0 / 255, inpSize, 0, true); |
|
|
|
|
testModel(modelName, input, l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void testLayer(const std::string& modelName, double l1 = 1e-5, double lInf = 1e-4) |
|
|
|
|
void Test_TFLite::testLayer(const std::string& modelName, double l1, double lInf) |
|
|
|
|
{ |
|
|
|
|
Mat inp = blobFromNPY(findDataFile("dnn/tflite/" + modelName + "_inp.npy")); |
|
|
|
|
Net net = readNet(findDataFile("dnn/tflite/" + modelName + ".tflite")); |
|
|
|
@ -69,29 +83,66 @@ void testLayer(const std::string& modelName, double l1 = 1e-5, double lInf = 1e- |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// https://google.github.io/mediapipe/solutions/face_mesh
|
|
|
|
|
TEST(Test_TFLite, face_landmark) |
|
|
|
|
TEST_P(Test_TFLite, face_landmark) |
|
|
|
|
{ |
|
|
|
|
testModel("face_landmark", Size(192, 192), 2e-5, 2e-4); |
|
|
|
|
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); |
|
|
|
|
double l1 = 2e-5, lInf = 2e-4; |
|
|
|
|
if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)) |
|
|
|
|
{ |
|
|
|
|
l1 = 0.15; |
|
|
|
|
lInf = 0.82; |
|
|
|
|
} |
|
|
|
|
testModel("face_landmark", Size(192, 192), l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// https://google.github.io/mediapipe/solutions/face_detection
|
|
|
|
|
TEST(Test_TFLite, face_detection_short_range) |
|
|
|
|
TEST_P(Test_TFLite, face_detection_short_range) |
|
|
|
|
{ |
|
|
|
|
testModel("face_detection_short_range", Size(128, 128)); |
|
|
|
|
double l1 = 0, lInf = 2e-4; |
|
|
|
|
if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)) |
|
|
|
|
{ |
|
|
|
|
l1 = 0.04; |
|
|
|
|
lInf = 0.8; |
|
|
|
|
} |
|
|
|
|
testModel("face_detection_short_range", Size(128, 128), l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// https://google.github.io/mediapipe/solutions/selfie_segmentation
|
|
|
|
|
TEST(Test_TFLite, selfie_segmentation) |
|
|
|
|
TEST_P(Test_TFLite, selfie_segmentation) |
|
|
|
|
{ |
|
|
|
|
testModel("selfie_segmentation", Size(256, 256)); |
|
|
|
|
double l1 = 0, lInf = 0; |
|
|
|
|
if (target == DNN_TARGET_CPU_FP16 || target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD || |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)) |
|
|
|
|
{ |
|
|
|
|
l1 = 0.01; |
|
|
|
|
lInf = 0.48; |
|
|
|
|
} |
|
|
|
|
testModel("selfie_segmentation", Size(256, 256), l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(Test_TFLite, max_unpooling) |
|
|
|
|
TEST_P(Test_TFLite, max_unpooling) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_CUDA) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); |
|
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target != DNN_TARGET_CPU) { |
|
|
|
|
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
|
|
|
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
|
|
|
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
|
|
|
|
|
|
|
|
// Due Max Unpoling is a numerically unstable operation and small difference between frameworks
|
|
|
|
|
// might lead to positional difference of maximal elements in the tensor, this test checks
|
|
|
|
|
// behavior of Max Unpooling layer only.
|
|
|
|
|
Net net = readNet(findDataFile("dnn/tflite/hair_segmentation.tflite", false)); |
|
|
|
|
net.setPreferableBackend(backend); |
|
|
|
|
net.setPreferableTarget(target); |
|
|
|
|
|
|
|
|
|
Mat input = imread(findDataFile("cv/shared/lena.png")); |
|
|
|
|
cvtColor(input, input, COLOR_BGR2RGBA); |
|
|
|
@ -101,7 +152,15 @@ TEST(Test_TFLite, max_unpooling) |
|
|
|
|
net.setInput(input); |
|
|
|
|
|
|
|
|
|
std::vector<std::vector<Mat> > outs; |
|
|
|
|
net.forward(outs, {"p_re_lu_1", "max_pooling_with_argmax2d", "conv2d_86", "max_unpooling2d_2"}); |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { |
|
|
|
|
// TODO: seems like a bug with a retrieving intermediate tensors
|
|
|
|
|
net.forward(outs, {"conv2d_transpose_4", "p_re_lu_1", "max_pooling_with_argmax2d", "conv2d_86", "max_unpooling2d_2"}); |
|
|
|
|
outs.erase(outs.begin()); |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
net.forward(outs, {"p_re_lu_1", "max_pooling_with_argmax2d", "conv2d_86", "max_unpooling2d_2"}); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
ASSERT_EQ(outs.size(), 4); |
|
|
|
|
ASSERT_EQ(outs[0].size(), 1); |
|
|
|
|
ASSERT_EQ(outs[1].size(), 2); |
|
|
|
@ -117,6 +176,8 @@ TEST(Test_TFLite, max_unpooling) |
|
|
|
|
ASSERT_EQ(poolOut.size, poolIds.size); |
|
|
|
|
ASSERT_EQ(poolOut.size, unpoolInp.size); |
|
|
|
|
|
|
|
|
|
ASSERT_EQ(countNonZero(poolInp), poolInp.total()); |
|
|
|
|
|
|
|
|
|
for (int c = 0; c < 32; ++c) { |
|
|
|
|
float *poolInpData = poolInp.ptr<float>(0, c); |
|
|
|
|
float *poolOutData = poolOut.ptr<float>(0, c); |
|
|
|
@ -135,15 +196,19 @@ TEST(Test_TFLite, max_unpooling) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
EXPECT_EQ(poolInpData[maxIdx], poolOutData[y * 64 + x]) << errMsg; |
|
|
|
|
EXPECT_EQ(poolIdsData[y * 64 + x], (float)maxIdx) << errMsg; |
|
|
|
|
if (backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) { |
|
|
|
|
EXPECT_EQ(poolIdsData[y * 64 + x], (float)maxIdx) << errMsg; |
|
|
|
|
} |
|
|
|
|
EXPECT_EQ(unpoolOutData[maxIdx], unpoolInpData[y * 64 + x]) << errMsg; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(Test_TFLite, EfficientDet_int8) { |
|
|
|
|
TEST_P(Test_TFLite, EfficientDet_int8) { |
|
|
|
|
Net net = readNet(findDataFile("dnn/tflite/coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite", false)); |
|
|
|
|
net.setPreferableBackend(backend); |
|
|
|
|
net.setPreferableTarget(target); |
|
|
|
|
|
|
|
|
|
Mat img = imread(findDataFile("dnn/dog416.png")); |
|
|
|
|
Mat blob = blobFromImage(img, 1.0, Size(320, 320)); |
|
|
|
@ -158,10 +223,18 @@ TEST(Test_TFLite, EfficientDet_int8) { |
|
|
|
|
normAssertDetections(ref, out, "", 0.5, 0.05, 0.1); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST(Test_TFLite, replicate_by_pack) { |
|
|
|
|
testLayer("replicate_by_pack"); |
|
|
|
|
TEST_P(Test_TFLite, replicate_by_pack) { |
|
|
|
|
double l1 = 0, lInf = 0; |
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) |
|
|
|
|
{ |
|
|
|
|
l1 = 4e-4; |
|
|
|
|
lInf = 2e-3; |
|
|
|
|
} |
|
|
|
|
testLayer("replicate_by_pack", l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_TFLite, dnnBackendsAndTargets()); |
|
|
|
|
|
|
|
|
|
}} // namespace
|
|
|
|
|
|
|
|
|
|
#endif // OPENCV_TEST_DNN_TFLITE
|
|
|
|
|