parent
12362f76b1
commit
a64d096369
1 changed files with 0 additions and 113 deletions
@ -1,113 +0,0 @@ |
|||||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
||||||
//
|
|
||||||
// By downloading, copying, installing or using the software you agree to this license.
|
|
||||||
// If you do not agree to this license, do not download, install,
|
|
||||||
// copy or use the software.
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// License Agreement
|
|
||||||
// For Open Source Computer Vision Library
|
|
||||||
//
|
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
//
|
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
|
||||||
// are permitted provided that the following conditions are met:
|
|
||||||
//
|
|
||||||
// * Redistribution's of source code must retain the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer.
|
|
||||||
//
|
|
||||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
||||||
// this list of conditions and the following disclaimer in the documentation
|
|
||||||
// and/or other materials provided with the distribution.
|
|
||||||
//
|
|
||||||
// * The name of the copyright holders may not be used to endorse or promote products
|
|
||||||
// derived from this software without specific prior written permission.
|
|
||||||
//
|
|
||||||
// This software is provided by the copyright holders and contributors "as is" and
|
|
||||||
// any express or implied warranties, including, but not limited to, the implied
|
|
||||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
||||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
||||||
// indirect, incidental, special, exemplary, or consequential damages
|
|
||||||
// (including, but not limited to, procurement of substitute goods or services;
|
|
||||||
// loss of use, data, or profits; or business interruption) however caused
|
|
||||||
// and on any theory of liability, whether in contract, strict liability,
|
|
||||||
// or tort (including negligence or otherwise) arising in any way out of
|
|
||||||
// the use of this software, even if advised of the possibility of such damage.
|
|
||||||
//
|
|
||||||
//M*/
|
|
||||||
|
|
||||||
#include "test_precomp.hpp" |
|
||||||
#include <string> |
|
||||||
|
|
||||||
using namespace cv; |
|
||||||
using namespace std; |
|
||||||
|
|
||||||
class CV_Adaptivethresh : public cvtest::BaseTest |
|
||||||
{ |
|
||||||
public: |
|
||||||
CV_Adaptivethresh(); |
|
||||||
~CV_Adaptivethresh(); |
|
||||||
protected: |
|
||||||
void run(int); |
|
||||||
}; |
|
||||||
|
|
||||||
CV_Adaptivethresh::CV_Adaptivethresh() {} |
|
||||||
CV_Adaptivethresh::~CV_Adaptivethresh() {} |
|
||||||
|
|
||||||
void CV_Adaptivethresh::run( int /* start_from */) |
|
||||||
{ |
|
||||||
string exp_path = string(ts->get_data_path()) + "adaptivethresh/lena_orig.png"; |
|
||||||
Mat lena = imread(exp_path, 0); // CV_LOAD_IMAGE_GRAYSCALE=0
|
|
||||||
if (lena.empty() ) |
|
||||||
{ |
|
||||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); |
|
||||||
return; |
|
||||||
} |
|
||||||
int sum=0; |
|
||||||
for (int i = 0; i < lena.rows; i++) |
|
||||||
{ |
|
||||||
unsigned char *ptr = lena.ptr(i); |
|
||||||
for (int j=0;j<lena.cols;j++,ptr++) |
|
||||||
sum+=*ptr; |
|
||||||
} |
|
||||||
if (sum!=31910861) |
|
||||||
{ |
|
||||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA ); |
|
||||||
return; |
|
||||||
} |
|
||||||
int windowSize[9] = {3,9,11,17,21,25,29,37,47}; |
|
||||||
int expectedValueMean[9] = {96138,121836,124499,129096,130538,131330,131743,131616,131223}; |
|
||||||
int expectedValueGaussNew[9] = {86308,112910,116197,122117,124672,126488,127855,129377,130387}; |
|
||||||
int expectedValueGaussOld[9] = {88583,81365,154081,98049,149357,106414,179701,168433,90250}; |
|
||||||
Mat im; |
|
||||||
bool failed=false; |
|
||||||
for(int i = 0; i<9; ++i ) |
|
||||||
{ |
|
||||||
adaptiveThreshold( lena, im, 255,cv::ADAPTIVE_THRESH_MEAN_C,THRESH_BINARY,windowSize[i],0); |
|
||||||
int numberWhite=countNonZero(im); |
|
||||||
if (numberWhite != expectedValueMean[i]) |
|
||||||
{ |
|
||||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
||||||
return; |
|
||||||
} |
|
||||||
adaptiveThreshold( lena, im, 255,cv::ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY,windowSize[i],0); |
|
||||||
if (numberWhite != expectedValueGaussNew[i]) |
|
||||||
{
|
|
||||||
|
|
||||||
if (numberWhite != expectedValueGaussOld[i]) |
|
||||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); |
|
||||||
else |
|
||||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH ); |
|
||||||
} |
|
||||||
} |
|
||||||
if (failed) |
|
||||||
ts->set_failed_test_info(cvtest::TS::OK); |
|
||||||
else |
|
||||||
ts->set_failed_test_info(cvtest::TS::OK); |
|
||||||
} |
|
||||||
|
|
||||||
TEST(Imgproc_Adaptivethresh, regression) { CV_Adaptivethresh test; test.safe_run(); } |
|
Loading…
Reference in new issue