Merge pull request #23108 from crackwitz:issue-23107

Usage of imread(): magic number 0, unchecked result

* docs: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()

* samples, apps: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()

* tests: rewrite 0/1 to IMREAD_GRAYSCALE/IMREAD_COLOR in imread()

* doc/py_tutorials: check imread() result
pull/23111/head
Christoph Rackwitz 2 years ago committed by GitHub
parent 7b7774476e
commit a64b51dd94
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      apps/traincascade/imagestorage.cpp
  2. 4
      doc/py_tutorials/py_calib3d/py_depthmap/py_depthmap.markdown
  3. 4
      doc/py_tutorials/py_calib3d/py_epipolar_geometry/py_epipolar_geometry.markdown
  4. 2
      doc/py_tutorials/py_core/py_basic_ops/py_basic_ops.markdown
  5. 4
      doc/py_tutorials/py_core/py_image_arithmetics/py_image_arithmetics.markdown
  6. 1
      doc/py_tutorials/py_core/py_optimization/py_optimization.markdown
  7. 2
      doc/py_tutorials/py_feature2d/py_brief/py_brief.markdown
  8. 2
      doc/py_tutorials/py_feature2d/py_fast/py_fast.markdown
  9. 4
      doc/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.markdown
  10. 2
      doc/py_tutorials/py_feature2d/py_orb/py_orb.markdown
  11. 2
      doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.markdown
  12. 3
      doc/py_tutorials/py_imgproc/py_canny/py_canny.markdown
  13. 3
      doc/py_tutorials/py_imgproc/py_contours/py_contour_features/py_contour_features.markdown
  14. 1
      doc/py_tutorials/py_imgproc/py_contours/py_contours_begin/py_contours_begin.markdown
  15. 7
      doc/py_tutorials/py_imgproc/py_contours/py_contours_more_functions/py_contours_more_functions.markdown
  16. 2
      doc/py_tutorials/py_imgproc/py_filtering/py_filtering.markdown
  17. 9
      doc/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.markdown
  18. 4
      doc/py_tutorials/py_imgproc/py_grabcut/py_grabcut.markdown
  19. 6
      doc/py_tutorials/py_imgproc/py_gradients/py_gradients.markdown
  20. 3
      doc/py_tutorials/py_imgproc/py_histograms/py_2d_histogram/py_2d_histogram.markdown
  21. 4
      doc/py_tutorials/py_imgproc/py_histograms/py_histogram_backprojection/py_histogram_backprojection.markdown
  22. 10
      doc/py_tutorials/py_imgproc/py_histograms/py_histogram_begins/py_histogram_begins.markdown
  23. 9
      doc/py_tutorials/py_imgproc/py_histograms/py_histogram_equalization/py_histogram_equalization.markdown
  24. 3
      doc/py_tutorials/py_imgproc/py_houghcircles/py_houghcircles.markdown
  25. 3
      doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.markdown
  26. 3
      doc/py_tutorials/py_imgproc/py_pyramids/py_pyramids.markdown
  27. 10
      doc/py_tutorials/py_imgproc/py_template_matching/py_template_matching.markdown
  28. 12
      doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.markdown
  29. 9
      doc/py_tutorials/py_imgproc/py_transforms/py_fourier_transform/py_fourier_transform.markdown
  30. 1
      doc/py_tutorials/py_imgproc/py_watershed/py_watershed.markdown
  31. 2
      doc/py_tutorials/py_photo/py_inpainting/py_inpainting.markdown
  32. 2
      doc/tutorials/introduction/linux_eclipse/linux_eclipse.markdown
  33. 2
      doc/tutorials/introduction/linux_gcc_cmake/linux_gcc_cmake.markdown
  34. 2
      modules/calib3d/test/test_chesscorners.cpp
  35. 12
      modules/calib3d/test/test_stereomatching.cpp
  36. 4
      modules/features2d/test/test_descriptors_regression.cpp
  37. 2
      modules/imgcodecs/misc/java/test/ImgcodecsTest.java
  38. 2
      modules/imgproc/test/test_connectedcomponents.cpp
  39. 2
      modules/imgproc/test/test_imgproc_umat.cpp
  40. 2
      modules/imgproc/test/test_watershed.cpp
  41. 2
      modules/java/test/android_test/src/org/opencv/test/OpenCVTestCase.java
  42. 2
      modules/java/test/pure_test/src/org/opencv/test/OpenCVTestCase.java
  43. 2
      modules/objdetect/test/test_cascadeandhog.cpp
  44. 2
      modules/photo/test/test_denoising.cpp
  45. 2
      modules/videoio/test/test_ffmpeg.cpp
  46. 4
      samples/cpp/3calibration.cpp
  47. 4
      samples/cpp/calibration.cpp
  48. 2
      samples/cpp/facedetect.cpp
  49. 2
      samples/cpp/pca.cpp
  50. 4
      samples/cpp/stereo_calib.cpp
  51. 2
      samples/cpp/tutorial_code/snippets/imgproc_HoughLinesCircles.cpp
  52. 2
      samples/cpp/tutorial_code/snippets/imgproc_HoughLinesP.cpp
  53. 2
      samples/cpp/tutorial_code/snippets/imgproc_calcHist.cpp
  54. 2
      samples/cpp/tutorial_code/snippets/imgproc_drawContours.cpp
  55. 2
      samples/cpp/watershed.cpp
  56. 2
      samples/python/calibrate.py
  57. 2
      samples/python/mouse_and_match.py

@ -54,7 +54,7 @@ bool CvCascadeImageReader::NegReader::nextImg()
size_t count = imgFilenames.size();
for( size_t i = 0; i < count; i++ )
{
src = imread( imgFilenames[last++], 0 );
src = imread( imgFilenames[last++], IMREAD_GRAYSCALE );
if( src.empty() ){
last %= count;
continue;

@ -41,8 +41,8 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
imgL = cv.imread('tsukuba_l.png',0)
imgR = cv.imread('tsukuba_r.png',0)
imgL = cv.imread('tsukuba_l.png', cv.IMREAD_GRAYSCALE)
imgR = cv.imread('tsukuba_r.png', cv.IMREAD_GRAYSCALE)
stereo = cv.StereoBM_create(numDisparities=16, blockSize=15)
disparity = stereo.compute(imgL,imgR)

@ -76,8 +76,8 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img1 = cv.imread('myleft.jpg',0) #queryimage # left image
img2 = cv.imread('myright.jpg',0) #trainimage # right image
img1 = cv.imread('myleft.jpg', cv.IMREAD_GRAYSCALE) #queryimage # left image
img2 = cv.imread('myright.jpg', cv.IMREAD_GRAYSCALE) #trainimage # right image
sift = cv.SIFT_create()

@ -25,6 +25,7 @@ Let's load a color image first:
>>> import cv2 as cv
>>> img = cv.imread('messi5.jpg')
>>> assert img is not None, "file could not be read, check with os.path.exists()"
@endcode
You can access a pixel value by its row and column coordinates. For BGR image, it returns an array
of Blue, Green, Red values. For grayscale image, just corresponding intensity is returned.
@ -173,6 +174,7 @@ from matplotlib import pyplot as plt
BLUE = [255,0,0]
img1 = cv.imread('opencv-logo.png')
assert img1 is not None, "file could not be read, check with os.path.exists()"
replicate = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REPLICATE)
reflect = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REFLECT)

@ -50,6 +50,8 @@ Here \f$\gamma\f$ is taken as zero.
@code{.py}
img1 = cv.imread('ml.png')
img2 = cv.imread('opencv-logo.png')
assert img1 is not None, "file could not be read, check with os.path.exists()"
assert img2 is not None, "file could not be read, check with os.path.exists()"
dst = cv.addWeighted(img1,0.7,img2,0.3,0)
@ -76,6 +78,8 @@ bitwise operations as shown below:
# Load two images
img1 = cv.imread('messi5.jpg')
img2 = cv.imread('opencv-logo-white.png')
assert img1 is not None, "file could not be read, check with os.path.exists()"
assert img2 is not None, "file could not be read, check with os.path.exists()"
# I want to put logo on top-left corner, So I create a ROI
rows,cols,channels = img2.shape

@ -37,6 +37,7 @@ of odd sizes ranging from 5 to 49. (Don't worry about what the result will look
goal):
@code{.py}
img1 = cv.imread('messi5.jpg')
assert img1 is not None, "file could not be read, check with os.path.exists()"
e1 = cv.getTickCount()
for i in range(5,49,2):

@ -63,7 +63,7 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
img = cv.imread('simple.jpg', cv.IMREAD_GRAYSCALE)
# Initiate FAST detector
star = cv.xfeatures2d.StarDetector_create()

@ -98,7 +98,7 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('blox.jpg',0) # `<opencv_root>/samples/data/blox.jpg`
img = cv.imread('blox.jpg', cv.IMREAD_GRAYSCALE) # `<opencv_root>/samples/data/blox.jpg`
# Initiate FAST object with default values
fast = cv.FastFeatureDetector_create()

@ -40,8 +40,8 @@ from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv.imread('box.png',0) # queryImage
img2 = cv.imread('box_in_scene.png',0) # trainImage
img1 = cv.imread('box.png', cv.IMREAD_GRAYSCALE) # queryImage
img2 = cv.imread('box_in_scene.png', cv.IMREAD_GRAYSCALE) # trainImage
# Initiate SIFT detector
sift = cv.SIFT_create()

@ -67,7 +67,7 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
img = cv.imread('simple.jpg', cv.IMREAD_GRAYSCALE)
# Initiate ORB detector
orb = cv.ORB_create()

@ -76,7 +76,7 @@ and descriptors.
First we will see a simple demo on how to find SURF keypoints and descriptors and draw it. All
examples are shown in Python terminal since it is just same as SIFT only.
@code{.py}
>>> img = cv.imread('fly.png',0)
>>> img = cv.imread('fly.png', cv.IMREAD_GRAYSCALE)
# Create SURF object. You can specify params here or later.
# Here I set Hessian Threshold to 400

@ -83,7 +83,8 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
img = cv.imread('messi5.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
edges = cv.Canny(img,100,200)
plt.subplot(121),plt.imshow(img,cmap = 'gray')

@ -24,7 +24,8 @@ The function **cv.moments()** gives a dictionary of all moment values calculated
import numpy as np
import cv2 as cv
img = cv.imread('star.jpg',0)
img = cv.imread('star.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
ret,thresh = cv.threshold(img,127,255,0)
im2,contours,hierarchy = cv.findContours(thresh, 1, 2)

@ -29,6 +29,7 @@ import numpy as np
import cv2 as cv
im = cv.imread('test.jpg')
assert im is not None, "file could not be read, check with os.path.exists()"
imgray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(imgray, 127, 255, 0)
im2, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)

@ -41,6 +41,7 @@ import cv2 as cv
import numpy as np
img = cv.imread('star.jpg')
assert img is not None, "file could not be read, check with os.path.exists()"
img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh = cv.threshold(img_gray, 127, 255,0)
im2,contours,hierarchy = cv.findContours(thresh,2,1)
@ -92,8 +93,10 @@ docs.
import cv2 as cv
import numpy as np
img1 = cv.imread('star.jpg',0)
img2 = cv.imread('star2.jpg',0)
img1 = cv.imread('star.jpg', cv.IMREAD_GRAYSCALE)
img2 = cv.imread('star2.jpg', cv.IMREAD_GRAYSCALE)
assert img1 is not None, "file could not be read, check with os.path.exists()"
assert img2 is not None, "file could not be read, check with os.path.exists()"
ret, thresh = cv.threshold(img1, 127, 255,0)
ret, thresh2 = cv.threshold(img2, 127, 255,0)

@ -29,6 +29,7 @@ import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('opencv_logo.png')
assert img is not None, "file could not be read, check with os.path.exists()"
kernel = np.ones((5,5),np.float32)/25
dst = cv.filter2D(img,-1,kernel)
@ -70,6 +71,7 @@ import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('opencv-logo-white.png')
assert img is not None, "file could not be read, check with os.path.exists()"
blur = cv.blur(img,(5,5))

@ -28,6 +28,7 @@ import numpy as np
import cv2 as cv
img = cv.imread('messi5.jpg')
assert img is not None, "file could not be read, check with os.path.exists()"
res = cv.resize(img,None,fx=2, fy=2, interpolation = cv.INTER_CUBIC)
@ -49,7 +50,8 @@ function. See the below example for a shift of (100,50):
import numpy as np
import cv2 as cv
img = cv.imread('messi5.jpg',0)
img = cv.imread('messi5.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
rows,cols = img.shape
M = np.float32([[1,0,100],[0,1,50]])
@ -87,7 +89,8 @@ where:
To find this transformation matrix, OpenCV provides a function, **cv.getRotationMatrix2D**. Check out the
below example which rotates the image by 90 degree with respect to center without any scaling.
@code{.py}
img = cv.imread('messi5.jpg',0)
img = cv.imread('messi5.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
rows,cols = img.shape
# cols-1 and rows-1 are the coordinate limits.
@ -108,6 +111,7 @@ which is to be passed to **cv.warpAffine**.
Check the below example, and also look at the points I selected (which are marked in green color):
@code{.py}
img = cv.imread('drawing.png')
assert img is not None, "file could not be read, check with os.path.exists()"
rows,cols,ch = img.shape
pts1 = np.float32([[50,50],[200,50],[50,200]])
@ -137,6 +141,7 @@ matrix.
See the code below:
@code{.py}
img = cv.imread('sudoku.png')
assert img is not None, "file could not be read, check with os.path.exists()"
rows,cols,ch = img.shape
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])

@ -93,6 +93,7 @@ import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg')
assert img is not None, "file could not be read, check with os.path.exists()"
mask = np.zeros(img.shape[:2],np.uint8)
bgdModel = np.zeros((1,65),np.float64)
@ -122,7 +123,8 @@ remaining background with gray. Then loaded that mask image in OpenCV, edited or
got with corresponding values in newly added mask image. Check the code below:*
@code{.py}
# newmask is the mask image I manually labelled
newmask = cv.imread('newmask.png',0)
newmask = cv.imread('newmask.png', cv.IMREAD_GRAYSCALE)
assert newmask is not None, "file could not be read, check with os.path.exists()"
# wherever it is marked white (sure foreground), change mask=1
# wherever it is marked black (sure background), change mask=0

@ -42,7 +42,8 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('dave.jpg',0)
img = cv.imread('dave.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
laplacian = cv.Laplacian(img,cv.CV_64F)
sobelx = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
@ -79,7 +80,8 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('box.png',0)
img = cv.imread('box.png', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
# Output dtype = cv.CV_8U
sobelx8u = cv.Sobel(img,cv.CV_8U,1,0,ksize=5)

@ -38,6 +38,7 @@ import numpy as np
import cv2 as cv
img = cv.imread('home.jpg')
assert img is not None, "file could not be read, check with os.path.exists()"
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
hist = cv.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
@ -55,6 +56,7 @@ import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('home.jpg')
assert img is not None, "file could not be read, check with os.path.exists()"
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
hist, xbins, ybins = np.histogram2d(h.ravel(),s.ravel(),[180,256],[[0,180],[0,256]])
@ -89,6 +91,7 @@ import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('home.jpg')
assert img is not None, "file could not be read, check with os.path.exists()"
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
hist = cv.calcHist( [hsv], [0, 1], None, [180, 256], [0, 180, 0, 256] )

@ -38,10 +38,12 @@ import cv2 as cvfrom matplotlib import pyplot as plt
#roi is the object or region of object we need to find
roi = cv.imread('rose_red.png')
assert roi is not None, "file could not be read, check with os.path.exists()"
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
#target is the image we search in
target = cv.imread('rose.png')
assert target is not None, "file could not be read, check with os.path.exists()"
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
# Find the histograms using calcHist. Can be done with np.histogram2d also
@ -85,9 +87,11 @@ import numpy as np
import cv2 as cv
roi = cv.imread('rose_red.png')
assert roi is not None, "file could not be read, check with os.path.exists()"
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
target = cv.imread('rose.png')
assert target is not None, "file could not be read, check with os.path.exists()"
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
# calculating object histogram

@ -77,7 +77,8 @@ and its parameters :
So let's start with a sample image. Simply load an image in grayscale mode and find its full
histogram.
@code{.py}
img = cv.imread('home.jpg',0)
img = cv.imread('home.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
hist = cv.calcHist([img],[0],None,[256],[0,256])
@endcode
hist is a 256x1 array, each value corresponds to number of pixels in that image with its
@ -121,7 +122,8 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('home.jpg',0)
img = cv.imread('home.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
plt.hist(img.ravel(),256,[0,256]); plt.show()
@endcode
You will get a plot as below :
@ -136,6 +138,7 @@ import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('home.jpg')
assert img is not None, "file could not be read, check with os.path.exists()"
color = ('b','g','r')
for i,col in enumerate(color):
histr = cv.calcHist([img],[i],None,[256],[0,256])
@ -164,7 +167,8 @@ We used cv.calcHist() to find the histogram of the full image. What if you want
of some regions of an image? Just create a mask image with white color on the region you want to
find histogram and black otherwise. Then pass this as the mask.
@code{.py}
img = cv.imread('home.jpg',0)
img = cv.imread('home.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
# create a mask
mask = np.zeros(img.shape[:2], np.uint8)

@ -30,7 +30,8 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('wiki.jpg',0)
img = cv.imread('wiki.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
hist,bins = np.histogram(img.flatten(),256,[0,256])
@ -81,7 +82,8 @@ output is our histogram equalized image.
Below is a simple code snippet showing its usage for same image we used :
@code{.py}
img = cv.imread('wiki.jpg',0)
img = cv.imread('wiki.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
equ = cv.equalizeHist(img)
res = np.hstack((img,equ)) #stacking images side-by-side
cv.imwrite('res.png',res)
@ -124,7 +126,8 @@ Below code snippet shows how to apply CLAHE in OpenCV:
import numpy as np
import cv2 as cv
img = cv.imread('tsukuba_l.png',0)
img = cv.imread('tsukuba_l.png', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
# create a CLAHE object (Arguments are optional).
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))

@ -23,7 +23,8 @@ explained in the documentation. So we directly go to the code.
import numpy as np
import cv2 as cv
img = cv.imread('opencv-logo-white.png',0)
img = cv.imread('opencv-logo-white.png', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
img = cv.medianBlur(img,5)
cimg = cv.cvtColor(img,cv.COLOR_GRAY2BGR)

@ -38,7 +38,8 @@ Here, as an example, I would use a 5x5 kernel with full of ones. Let's see it ho
import cv2 as cv
import numpy as np
img = cv.imread('j.png',0)
img = cv.imread('j.png', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
kernel = np.ones((5,5),np.uint8)
erosion = cv.erode(img,kernel,iterations = 1)
@endcode

@ -31,6 +31,7 @@ Similarly while expanding, area becomes 4 times in each level. We can find Gauss
**cv.pyrDown()** and **cv.pyrUp()** functions.
@code{.py}
img = cv.imread('messi5.jpg')
assert img is not None, "file could not be read, check with os.path.exists()"
lower_reso = cv.pyrDown(higher_reso)
@endcode
Below is the 4 levels in an image pyramid.
@ -84,6 +85,8 @@ import numpy as np,sys
A = cv.imread('apple.jpg')
B = cv.imread('orange.jpg')
assert A is not None, "file could not be read, check with os.path.exists()"
assert B is not None, "file could not be read, check with os.path.exists()"
# generate Gaussian pyramid for A
G = A.copy()

@ -38,9 +38,11 @@ import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
img = cv.imread('messi5.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
img2 = img.copy()
template = cv.imread('template.jpg',0)
template = cv.imread('template.jpg', cv.IMREAD_GRAYSCALE)
assert template is not None, "file could not be read, check with os.path.exists()"
w, h = template.shape[::-1]
# All the 6 methods for comparison in a list
@ -113,8 +115,10 @@ import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv.imread('mario.png')
assert img_rgb is not None, "file could not be read, check with os.path.exists()"
img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)
template = cv.imread('mario_coin.png',0)
template = cv.imread('mario_coin.png', cv.IMREAD_GRAYSCALE)
assert template is not None, "file could not be read, check with os.path.exists()"
w, h = template.shape[::-1]
res = cv.matchTemplate(img_gray,template,cv.TM_CCOEFF_NORMED)

@ -37,7 +37,8 @@ import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('gradient.png',0)
img = cv.imread('gradient.png', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
ret,thresh2 = cv.threshold(img,127,255,cv.THRESH_BINARY_INV)
ret,thresh3 = cv.threshold(img,127,255,cv.THRESH_TRUNC)
@ -85,7 +86,8 @@ import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('sudoku.png',0)
img = cv.imread('sudoku.png', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
img = cv.medianBlur(img,5)
ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
@ -133,7 +135,8 @@ import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('noisy2.png',0)
img = cv.imread('noisy2.png', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
# global thresholding
ret1,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
@ -183,7 +186,8 @@ where
It actually finds a value of t which lies in between two peaks such that variances to both classes
are minimal. It can be simply implemented in Python as follows:
@code{.py}
img = cv.imread('noisy2.png',0)
img = cv.imread('noisy2.png', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
blur = cv.GaussianBlur(img,(5,5),0)
# find normalized_histogram, and its cumulative distribution function

@ -54,7 +54,8 @@ import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
img = cv.imread('messi5.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
@ -121,7 +122,8 @@ import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
img = cv.imread('messi5.jpg', cv.IMREAD_GRAYSCALE)
assert img is not None, "file could not be read, check with os.path.exists()"
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
@ -184,7 +186,8 @@ So how do we find this optimal size ? OpenCV provides a function, **cv.getOptima
this. It is applicable to both **cv.dft()** and **np.fft.fft2()**. Let's check their performance
using IPython magic command %timeit.
@code{.py}
In [16]: img = cv.imread('messi5.jpg',0)
In [15]: img = cv.imread('messi5.jpg', cv.IMREAD_GRAYSCALE)
In [16]: assert img is not None, "file could not be read, check with os.path.exists()"
In [17]: rows,cols = img.shape
In [18]: print("{} {}".format(rows,cols))
342 548

@ -49,6 +49,7 @@ import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('coins.png')
assert img is not None, "file could not be read, check with os.path.exists()"
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(gray,0,255,cv.THRESH_BINARY_INV+cv.THRESH_OTSU)
@endcode

@ -56,7 +56,7 @@ import numpy as np
import cv2 as cv
img = cv.imread('messi_2.jpg')
mask = cv.imread('mask2.png',0)
mask = cv.imread('mask2.png', cv.IMREAD_GRAYSCALE)
dst = cv.inpaint(img,mask,3,cv.INPAINT_TELEA)

@ -55,7 +55,7 @@ Making a project
int main( int argc, char** argv )
{
Mat image;
image = imread( argv[1], 1 );
image = imread( argv[1], IMREAD_COLOR );
if( argc != 2 || !image.data )
{

@ -35,7 +35,7 @@ int main(int argc, char** argv )
}
Mat image;
image = imread( argv[1], 1 );
image = imread( argv[1], IMREAD_COLOR );
if ( !image.data )
{

@ -216,7 +216,7 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
/* read the image */
String img_file = board_list[idx * 2];
Mat gray = imread( folder + img_file, 0);
Mat gray = imread( folder + img_file, IMREAD_GRAYSCALE);
if( gray.empty() )
{

@ -456,8 +456,8 @@ void CV_StereoMatchingTest::run(int)
string datasetFullDirName = dataPath + DATASETS_DIR + datasetName + "/";
Mat leftImg = imread(datasetFullDirName + LEFT_IMG_NAME);
Mat rightImg = imread(datasetFullDirName + RIGHT_IMG_NAME);
Mat trueLeftDisp = imread(datasetFullDirName + TRUE_LEFT_DISP_NAME, 0);
Mat trueRightDisp = imread(datasetFullDirName + TRUE_RIGHT_DISP_NAME, 0);
Mat trueLeftDisp = imread(datasetFullDirName + TRUE_LEFT_DISP_NAME, IMREAD_GRAYSCALE);
Mat trueRightDisp = imread(datasetFullDirName + TRUE_RIGHT_DISP_NAME, IMREAD_GRAYSCALE);
Rect calcROI;
if( leftImg.empty() || rightImg.empty() || trueLeftDisp.empty() )
@ -835,9 +835,9 @@ TEST_P(Calib3d_StereoBM_BufferBM, memAllocsTest)
const int SADWindowSize = get<1>(get<1>(GetParam()));
String path = cvtest::TS::ptr()->get_data_path() + "cv/stereomatching/datasets/teddy/";
Mat leftImg = imread(path + "im2.png", 0);
Mat leftImg = imread(path + "im2.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(leftImg.empty());
Mat rightImg = imread(path + "im6.png", 0);
Mat rightImg = imread(path + "im6.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(rightImg.empty());
Mat leftDisp;
{
@ -923,9 +923,9 @@ TEST(Calib3d_StereoSGBM, regression) { CV_StereoSGBMTest test; test.safe_run();
TEST(Calib3d_StereoSGBM_HH4, regression)
{
String path = cvtest::TS::ptr()->get_data_path() + "cv/stereomatching/datasets/teddy/";
Mat leftImg = imread(path + "im2.png", 0);
Mat leftImg = imread(path + "im2.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(leftImg.empty());
Mat rightImg = imread(path + "im6.png", 0);
Mat rightImg = imread(path + "im6.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(rightImg.empty());
Mat testData = imread(path + "disp2_hh4.png",-1);
ASSERT_FALSE(testData.empty());

@ -406,7 +406,7 @@ TEST( Features2d_DescriptorExtractor, batch_ORB )
for( i = 0; i < n; i++ )
{
string imgname = format("%s/img%d.png", path.c_str(), i+1);
Mat img = imread(imgname, 0);
Mat img = imread(imgname, IMREAD_GRAYSCALE);
imgs.push_back(img);
}
@ -434,7 +434,7 @@ TEST( Features2d_DescriptorExtractor, batch_SIFT )
for( i = 0; i < n; i++ )
{
string imgname = format("%s/img%d.png", path.c_str(), i+1);
Mat img = imread(imgname, 0);
Mat img = imread(imgname, IMREAD_GRAYSCALE);
imgs.push_back(img);
}

@ -45,7 +45,7 @@ public class ImgcodecsTest extends OpenCVTestCase {
}
public void testImreadStringInt() {
dst = Imgcodecs.imread(OpenCVTestRunner.LENA_PATH, 0);
dst = Imgcodecs.imread(OpenCVTestRunner.LENA_PATH, Imgcodecs.IMREAD_GRAYSCALE);
assertFalse(dst.empty());
assertEquals(1, dst.channels());
assertTrue(512 == dst.cols());

@ -81,7 +81,7 @@ void CV_ConnectedComponentsTest::run(int /* start_from */)
int ccltype[] = { cv::CCL_DEFAULT, cv::CCL_WU, cv::CCL_GRANA, cv::CCL_BOLELLI, cv::CCL_SAUF, cv::CCL_BBDT, cv::CCL_SPAGHETTI };
string exp_path = string(ts->get_data_path()) + "connectedcomponents/ccomp_exp.png";
Mat exp = imread(exp_path, 0);
Mat exp = imread(exp_path, IMREAD_GRAYSCALE);
Mat orig = imread(string(ts->get_data_path()) + "connectedcomponents/concentric_circles.png", 0);
if (orig.empty())

@ -53,7 +53,7 @@ protected:
void run(int)
{
string imgpath = string(ts->get_data_path()) + "shared/lena.png";
Mat img = imread(imgpath, 1), gray, smallimg, result;
Mat img = imread(imgpath, IMREAD_COLOR), gray, smallimg, result;
UMat uimg = img.getUMat(ACCESS_READ), ugray, usmallimg, uresult;
cvtColor(img, gray, COLOR_BGR2GRAY);

@ -59,7 +59,7 @@ CV_WatershedTest::~CV_WatershedTest() {}
void CV_WatershedTest::run( int /* start_from */)
{
string exp_path = string(ts->get_data_path()) + "watershed/wshed_exp.png";
Mat exp = imread(exp_path, 0);
Mat exp = imread(exp_path, IMREAD_GRAYSCALE);
Mat orig = imread(string(ts->get_data_path()) + "inpaint/orig.png");
FileStorage fs(string(ts->get_data_path()) + "watershed/comp.xml", FileStorage::READ);

@ -149,7 +149,7 @@ public class OpenCVTestCase extends TestCase {
rgba128 = new Mat(matSize, matSize, CvType.CV_8UC4, Scalar.all(128));
rgbLena = Imgcodecs.imread(OpenCVTestRunner.LENA_PATH);
grayChess = Imgcodecs.imread(OpenCVTestRunner.CHESS_PATH, 0);
grayChess = Imgcodecs.imread(OpenCVTestRunner.CHESS_PATH, Imgcodecs.IMREAD_GRAYSCALE);
gray255_32f_3d = new Mat(new int[]{matSize, matSize, matSize}, CvType.CV_32F, new Scalar(255.0));

@ -175,7 +175,7 @@ public class OpenCVTestCase extends TestCase {
rgba128 = new Mat(matSize, matSize, CvType.CV_8UC4, Scalar.all(128));
rgbLena = Imgcodecs.imread(OpenCVTestRunner.LENA_PATH);
grayChess = Imgcodecs.imread(OpenCVTestRunner.CHESS_PATH, 0);
grayChess = Imgcodecs.imread(OpenCVTestRunner.CHESS_PATH, Imgcodecs.IMREAD_GRAYSCALE);
gray255_32f_3d = new Mat(new int[]{matSize, matSize, matSize}, CvType.CV_32F, new Scalar(255.0));

@ -137,7 +137,7 @@ int CV_DetectorTest::prepareData( FileStorage& _fs )
String filename;
it >> filename;
imageFilenames.push_back(filename);
Mat img = imread( dataPath+filename, 1 );
Mat img = imread( dataPath+filename, IMREAD_COLOR );
images.push_back( img );
}
}

@ -157,7 +157,7 @@ TEST(Photo_White, issue_2646)
TEST(Photo_Denoising, speed)
{
string imgname = string(cvtest::TS::ptr()->get_data_path()) + "shared/5MP.png";
Mat src = imread(imgname, 0), dst;
Mat src = imread(imgname, IMREAD_GRAYSCALE), dst;
double t = (double)getTickCount();
fastNlMeansDenoising(src, dst, 5, 7, 21);

@ -194,7 +194,7 @@ public:
{
string filename = ts->get_data_path() + "readwrite/ordinary.bmp";
VideoCapture cap(filename, CAP_FFMPEG);
Mat img0 = imread(filename, 1);
Mat img0 = imread(filename, IMREAD_COLOR);
Mat img, img_next;
cap >> img;
cap >> img_next;

@ -250,7 +250,7 @@ int main( int argc, char** argv )
{
int k1 = k == 0 ? 2 : k == 1 ? 0 : 1;
printf("%s\n", imageList[i*3+k].c_str());
view = imread(imageList[i*3+k], 1);
view = imread(imageList[i*3+k], IMREAD_COLOR);
if(!view.empty())
{
@ -338,7 +338,7 @@ int main( int argc, char** argv )
{
int k1 = k == 0 ? 2 : k == 1 ? 0 : 1;
int k2 = k == 0 ? 1 : k == 1 ? 0 : 2;
view = imread(imageList[i*3+k], 1);
view = imread(imageList[i*3+k], IMREAD_COLOR);
if(view.empty())
continue;

@ -456,7 +456,7 @@ int main( int argc, char** argv )
view0.copyTo(view);
}
else if( i < (int)imageList.size() )
view = imread(imageList[i], 1);
view = imread(imageList[i], IMREAD_COLOR);
if(view.empty())
{
@ -581,7 +581,7 @@ int main( int argc, char** argv )
for( i = 0; i < (int)imageList.size(); i++ )
{
view = imread(imageList[i], 1);
view = imread(imageList[i], IMREAD_COLOR);
if(view.empty())
continue;
remap(view, rview, map1, map2, INTER_LINEAR);

@ -145,7 +145,7 @@ int main( int argc, const char** argv )
len--;
buf[len] = '\0';
cout << "file " << buf << endl;
image = imread( buf, 1 );
image = imread( buf, IMREAD_COLOR );
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );

@ -59,7 +59,7 @@ static void read_imgList(const string& filename, vector<Mat>& images) {
}
string line;
while (getline(file, line)) {
images.push_back(imread(line, 0));
images.push_back(imread(line, IMREAD_GRAYSCALE));
}
}

@ -80,7 +80,7 @@ StereoCalib(const vector<string>& imagelist, Size boardSize, float squareSize, b
for( k = 0; k < 2; k++ )
{
const string& filename = imagelist[i*2+k];
Mat img = imread(filename, 0);
Mat img = imread(filename, IMREAD_GRAYSCALE);
if(img.empty())
break;
if( imageSize == Size() )
@ -298,7 +298,7 @@ StereoCalib(const vector<string>& imagelist, Size boardSize, float squareSize, b
{
for( k = 0; k < 2; k++ )
{
Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;
Mat img = imread(goodImageList[i*2+k], IMREAD_GRAYSCALE), rimg, cimg;
remap(img, rimg, rmap[k][0], rmap[k][1], INTER_LINEAR);
cvtColor(rimg, cimg, COLOR_GRAY2BGR);
Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));

@ -8,7 +8,7 @@ using namespace std;
int main(int argc, char** argv)
{
Mat img, gray;
if( argc != 2 || !(img=imread(argv[1], 1)).data)
if( argc != 2 || !(img=imread(argv[1], IMREAD_COLOR)).data)
return -1;
cvtColor(img, gray, COLOR_BGR2GRAY);
// smooth it, otherwise a lot of false circles may be detected

@ -7,7 +7,7 @@ using namespace std;
int main(int argc, char** argv)
{
Mat src, dst, color_dst;
if( argc != 2 || !(src=imread(argv[1], 0)).data)
if( argc != 2 || !(src=imread(argv[1], IMREAD_GRAYSCALE)).data)
return -1;
Canny( src, dst, 50, 200, 3 );

@ -6,7 +6,7 @@ using namespace cv;
int main( int argc, char** argv )
{
Mat src, hsv;
if( argc != 2 || !(src=imread(argv[1], 1)).data )
if( argc != 2 || !(src=imread(argv[1], IMREAD_COLOR)).data )
return -1;
cvtColor(src, hsv, COLOR_BGR2HSV);

@ -9,7 +9,7 @@ int main( int argc, char** argv )
Mat src;
// the first command-line parameter must be a filename of the binary
// (black-n-white) image
if( argc != 2 || !(src=imread(argv[1], 0)).data)
if( argc != 2 || !(src=imread(argv[1], IMREAD_GRAYSCALE)).data)
return -1;
Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);

@ -54,7 +54,7 @@ int main( int argc, char** argv )
return 0;
}
string filename = samples::findFile(parser.get<string>("@input"));
Mat img0 = imread(filename, 1), imgGray;
Mat img0 = imread(filename, IMREAD_COLOR), imgGray;
if( img0.empty() )
{

@ -57,7 +57,7 @@ def main():
def processImage(fn):
print('processing %s... ' % fn)
img = cv.imread(fn, 0)
img = cv.imread(fn, cv.IMREAD_GRAYSCALE)
if img is None:
print("Failed to load", fn)
return None

@ -69,7 +69,7 @@ class App():
if ext == "png" or ext == "jpg" or ext == "bmp" or ext == "tiff" or ext == "pbm":
print(infile)
img = cv.imread(infile,1)
img = cv.imread(infile, cv.IMREAD_COLOR)
if img is None:
continue
self.sel = (0,0,0,0)

Loading…
Cancel
Save