|
|
|
@ -48,154 +48,142 @@ |
|
|
|
|
using namespace cv; |
|
|
|
|
using namespace cv::ocl; |
|
|
|
|
|
|
|
|
|
// currently sort procedure on the host is more efficient
|
|
|
|
|
static bool use_cpu_sorter = true; |
|
|
|
|
|
|
|
|
|
namespace |
|
|
|
|
// compact structure for corners
|
|
|
|
|
struct DefCorner |
|
|
|
|
{ |
|
|
|
|
enum SortMethod |
|
|
|
|
float eig; //eigenvalue of corner
|
|
|
|
|
short x; //x coordinate of corner point
|
|
|
|
|
short y; //y coordinate of corner point
|
|
|
|
|
} ; |
|
|
|
|
|
|
|
|
|
// compare procedure for corner
|
|
|
|
|
//it is used for sort on the host side
|
|
|
|
|
struct DefCornerCompare |
|
|
|
|
{ |
|
|
|
|
CPU_STL, |
|
|
|
|
BITONIC, |
|
|
|
|
SELECTION |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
const int GROUP_SIZE = 256; |
|
|
|
|
|
|
|
|
|
template<SortMethod method> |
|
|
|
|
struct Sorter |
|
|
|
|
{ |
|
|
|
|
//typedef EigType;
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
//TODO(pengx): optimize GPU sorter's performance thus CPU sorter is removed.
|
|
|
|
|
template<> |
|
|
|
|
struct Sorter<CPU_STL> |
|
|
|
|
{ |
|
|
|
|
typedef oclMat EigType; |
|
|
|
|
static cv::Mutex cs; |
|
|
|
|
static Mat mat_eig; |
|
|
|
|
|
|
|
|
|
//prototype
|
|
|
|
|
static int clfloat2Gt(cl_float2 pt1, cl_float2 pt2) |
|
|
|
|
{ |
|
|
|
|
float v1 = mat_eig.at<float>(cvRound(pt1.s[1]), cvRound(pt1.s[0])); |
|
|
|
|
float v2 = mat_eig.at<float>(cvRound(pt2.s[1]), cvRound(pt2.s[0])); |
|
|
|
|
return v1 > v2; |
|
|
|
|
} |
|
|
|
|
static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count) |
|
|
|
|
bool operator()(const DefCorner a, const DefCorner b) const |
|
|
|
|
{ |
|
|
|
|
cv::AutoLock lock(cs); |
|
|
|
|
//temporarily use STL's sort function
|
|
|
|
|
Mat mat_corners = corners; |
|
|
|
|
mat_eig = eig_tex; |
|
|
|
|
std::sort(mat_corners.begin<cl_float2>(), mat_corners.begin<cl_float2>() + count, clfloat2Gt); |
|
|
|
|
corners = mat_corners; |
|
|
|
|
return a.eig > b.eig; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
cv::Mutex Sorter<CPU_STL>::cs; |
|
|
|
|
cv::Mat Sorter<CPU_STL>::mat_eig; |
|
|
|
|
|
|
|
|
|
template<> |
|
|
|
|
struct Sorter<BITONIC> |
|
|
|
|
// sort corner point using opencl bitonicosrt implementation
|
|
|
|
|
static void sortCorners_caller(oclMat& corners, const int count) |
|
|
|
|
{ |
|
|
|
|
typedef TextureCL EigType; |
|
|
|
|
|
|
|
|
|
static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count) |
|
|
|
|
Context * cxt = Context::getContext(); |
|
|
|
|
int GS = count/2; |
|
|
|
|
int LS = min(255,GS); |
|
|
|
|
size_t globalThreads[3] = {GS, 1, 1}; |
|
|
|
|
size_t localThreads[3] = {LS, 1, 1}; |
|
|
|
|
|
|
|
|
|
// 2^numStages should be equal to count or the output is invalid
|
|
|
|
|
int numStages = 0; |
|
|
|
|
for(int i = count; i > 1; i >>= 1) |
|
|
|
|
{ |
|
|
|
|
Context * cxt = Context::getContext(); |
|
|
|
|
size_t globalThreads[3] = {count / 2, 1, 1}; |
|
|
|
|
size_t localThreads[3] = {GROUP_SIZE, 1, 1}; |
|
|
|
|
|
|
|
|
|
// 2^numStages should be equal to count or the output is invalid
|
|
|
|
|
int numStages = 0; |
|
|
|
|
for(int i = count; i > 1; i >>= 1) |
|
|
|
|
{ |
|
|
|
|
++numStages; |
|
|
|
|
} |
|
|
|
|
const int argc = 5; |
|
|
|
|
std::vector< std::pair<size_t, const void *> > args(argc); |
|
|
|
|
std::string kernelname = "sortCorners_bitonicSort"; |
|
|
|
|
args[0] = std::make_pair(sizeof(cl_mem), (void *)&eig_tex); |
|
|
|
|
args[1] = std::make_pair(sizeof(cl_mem), (void *)&corners.data); |
|
|
|
|
args[2] = std::make_pair(sizeof(cl_int), (void *)&count); |
|
|
|
|
for(int stage = 0; stage < numStages; ++stage) |
|
|
|
|
{ |
|
|
|
|
args[3] = std::make_pair(sizeof(cl_int), (void *)&stage); |
|
|
|
|
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage) |
|
|
|
|
{ |
|
|
|
|
args[4] = std::make_pair(sizeof(cl_int), (void *)&passOfStage); |
|
|
|
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
++numStages; |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
template<> |
|
|
|
|
struct Sorter<SELECTION> |
|
|
|
|
{ |
|
|
|
|
typedef TextureCL EigType; |
|
|
|
|
|
|
|
|
|
static void sortCorners_caller(const EigType& eig_tex, oclMat& corners, const int count) |
|
|
|
|
const int argc = 4; |
|
|
|
|
std::vector< std::pair<size_t, const void *> > args(argc); |
|
|
|
|
std::string kernelname = "sortCorners_bitonicSort"; |
|
|
|
|
args[0] = std::make_pair(sizeof(cl_mem), (void *)&corners.data); |
|
|
|
|
args[1] = std::make_pair(sizeof(cl_int), (void *)&count); |
|
|
|
|
for(int stage = 0; stage < numStages; ++stage) |
|
|
|
|
{ |
|
|
|
|
Context * cxt = Context::getContext(); |
|
|
|
|
|
|
|
|
|
size_t globalThreads[3] = {count, 1, 1}; |
|
|
|
|
size_t localThreads[3] = {GROUP_SIZE, 1, 1}; |
|
|
|
|
|
|
|
|
|
std::vector< std::pair<size_t, const void *> > args; |
|
|
|
|
//local
|
|
|
|
|
std::string kernelname = "sortCorners_selectionSortLocal"; |
|
|
|
|
int lds_size = GROUP_SIZE * sizeof(cl_float2); |
|
|
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&eig_tex) ); |
|
|
|
|
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&corners.data) ); |
|
|
|
|
args.push_back( std::make_pair( sizeof(cl_int), (void*)&count) ); |
|
|
|
|
args.push_back( std::make_pair( lds_size, (void*)NULL) ); |
|
|
|
|
|
|
|
|
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1); |
|
|
|
|
|
|
|
|
|
//final
|
|
|
|
|
kernelname = "sortCorners_selectionSortFinal"; |
|
|
|
|
args.pop_back(); |
|
|
|
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1); |
|
|
|
|
args[2] = std::make_pair(sizeof(cl_int), (void *)&stage); |
|
|
|
|
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage) |
|
|
|
|
{ |
|
|
|
|
args[3] = std::make_pair(sizeof(cl_int), (void *)&passOfStage); |
|
|
|
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int findCorners_caller( |
|
|
|
|
const TextureCL& eig, |
|
|
|
|
const float threshold, |
|
|
|
|
const oclMat& mask, |
|
|
|
|
oclMat& corners, |
|
|
|
|
const int max_count) |
|
|
|
|
// find corners on matrix and put it into array
|
|
|
|
|
void findCorners_caller( |
|
|
|
|
const oclMat& eig_mat, //input matrix worth eigenvalues
|
|
|
|
|
oclMat& eigMinMax, //input with min and max values of eigenvalues
|
|
|
|
|
const float qualityLevel, |
|
|
|
|
const oclMat& mask, |
|
|
|
|
oclMat& corners, //output array with detected corners
|
|
|
|
|
oclMat& counter) //output value with number of detected corners, have to be 0 before call
|
|
|
|
|
{ |
|
|
|
|
string opt; |
|
|
|
|
std::vector<int> k; |
|
|
|
|
Context * cxt = Context::getContext(); |
|
|
|
|
|
|
|
|
|
std::vector< std::pair<size_t, const void*> > args; |
|
|
|
|
std::string kernelname = "findCorners"; |
|
|
|
|
|
|
|
|
|
const int mask_strip = mask.step / mask.elemSize1(); |
|
|
|
|
|
|
|
|
|
oclMat g_counter(1, 1, CV_32SC1); |
|
|
|
|
g_counter.setTo(0); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&(eig_mat.data))); |
|
|
|
|
|
|
|
|
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&eig )); |
|
|
|
|
int src_pitch = (int)eig_mat.step; |
|
|
|
|
args.push_back(make_pair( sizeof(cl_int), (void*)&src_pitch )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&mask.data )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&corners.data )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_int), (void*)&mask_strip)); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_float), (void*)&threshold )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_int), (void*)&eig.rows )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_int), (void*)&eig.cols )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_int), (void*)&max_count )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&g_counter.data )); |
|
|
|
|
|
|
|
|
|
size_t globalThreads[3] = {eig.cols, eig.rows, 1}; |
|
|
|
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&eigMinMax.data )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_float), (void*)&qualityLevel )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_int), (void*)&eig_mat.rows )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_int), (void*)&eig_mat.cols )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_int), (void*)&corners.cols )); |
|
|
|
|
args.push_back(make_pair( sizeof(cl_mem), (void*)&counter.data )); |
|
|
|
|
|
|
|
|
|
size_t globalThreads[3] = {eig_mat.cols, eig_mat.rows, 1}; |
|
|
|
|
size_t localThreads[3] = {16, 16, 1}; |
|
|
|
|
if(!mask.empty()) |
|
|
|
|
opt += " -D WITH_MASK=1"; |
|
|
|
|
|
|
|
|
|
const char * opt = mask.empty() ? "" : "-D WITH_MASK"; |
|
|
|
|
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1, opt); |
|
|
|
|
return std::min(Mat(g_counter).at<int>(0), max_count); |
|
|
|
|
openCLExecuteKernel(cxt, &imgproc_gftt, "findCorners", globalThreads, localThreads, args, -1, -1, opt.c_str()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void minMaxEig_caller(const oclMat &src, oclMat &dst, oclMat & tozero) |
|
|
|
|
{ |
|
|
|
|
size_t groupnum = src.clCxt->getDeviceInfo().maxComputeUnits; |
|
|
|
|
CV_Assert(groupnum != 0); |
|
|
|
|
|
|
|
|
|
int dbsize = groupnum * 2 * src.elemSize(); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, dbsize, CV_8UC1, dst); |
|
|
|
|
|
|
|
|
|
cl_mem dst_data = reinterpret_cast<cl_mem>(dst.data); |
|
|
|
|
|
|
|
|
|
int all_cols = src.step / src.elemSize(); |
|
|
|
|
int pre_cols = (src.offset % src.step) / src.elemSize(); |
|
|
|
|
int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / src.elemSize() - 1; |
|
|
|
|
int invalid_cols = pre_cols + sec_cols; |
|
|
|
|
int cols = all_cols - invalid_cols , elemnum = cols * src.rows; |
|
|
|
|
int offset = src.offset / src.elemSize(); |
|
|
|
|
|
|
|
|
|
{// first parallel pass
|
|
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&invalid_cols )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset)); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&elemnum)); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum)); |
|
|
|
|
size_t globalThreads[3] = {groupnum * 256, 1, 1}; |
|
|
|
|
size_t localThreads[3] = {256, 1, 1}; |
|
|
|
|
openCLExecuteKernel(src.clCxt, &arithm_minMax, "arithm_op_minMax", globalThreads, localThreads, |
|
|
|
|
args, -1, -1, "-D T=float -D DEPTH_5"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
{// run final "serial" kernel to find accumulate results from threads and reset corner counter
|
|
|
|
|
vector<pair<size_t , const void *> > args; |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum )); |
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&tozero.data )); |
|
|
|
|
size_t globalThreads[3] = {1, 1, 1}; |
|
|
|
|
size_t localThreads[3] = {1, 1, 1}; |
|
|
|
|
openCLExecuteKernel(src.clCxt, &imgproc_gftt, "arithm_op_minMax_final", globalThreads, localThreads, |
|
|
|
|
args, -1, -1); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
}//unnamed namespace
|
|
|
|
|
|
|
|
|
|
void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image, oclMat& corners, const oclMat& mask) |
|
|
|
|
{ |
|
|
|
@ -205,67 +193,99 @@ void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image, |
|
|
|
|
ensureSizeIsEnough(image.size(), CV_32F, eig_); |
|
|
|
|
|
|
|
|
|
if (useHarrisDetector) |
|
|
|
|
cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3, harrisK); |
|
|
|
|
cornerHarris_dxdy(image, eig_, Dx_, Dy_, blockSize, 3, harrisK); |
|
|
|
|
else |
|
|
|
|
cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3); |
|
|
|
|
|
|
|
|
|
double maxVal = 0; |
|
|
|
|
minMax(eig_, NULL, &maxVal); |
|
|
|
|
ensureSizeIsEnough(1,1, CV_32SC1, counter_); |
|
|
|
|
|
|
|
|
|
// find max eigenvalue and reset detected counters
|
|
|
|
|
minMaxEig_caller(eig_,eig_minmax_,counter_); |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, std::max(1000, static_cast<int>(image.size().area() * 0.05)), CV_32FC2, tmpCorners_); |
|
|
|
|
// allocate buffer for kernels
|
|
|
|
|
int corner_array_size = std::max(1024, static_cast<int>(image.size().area() * 0.05)); |
|
|
|
|
|
|
|
|
|
Ptr<TextureCL> eig_tex = bindTexturePtr(eig_); |
|
|
|
|
int total = findCorners_caller( |
|
|
|
|
*eig_tex, |
|
|
|
|
static_cast<float>(maxVal * qualityLevel), |
|
|
|
|
if(!use_cpu_sorter) |
|
|
|
|
{ // round to 2^n
|
|
|
|
|
unsigned int n=1; |
|
|
|
|
for(n=1;n<(unsigned int)corner_array_size;n<<=1); |
|
|
|
|
corner_array_size = (int)n; |
|
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_); |
|
|
|
|
|
|
|
|
|
// set to 0 to be able use bitonic sort on whole 2^n array
|
|
|
|
|
tmpCorners_.setTo(0); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int total = tmpCorners_.cols; // by default the number of corner is full array
|
|
|
|
|
vector<DefCorner> tmp(tmpCorners_.cols); // input buffer with corner for HOST part of algorithm
|
|
|
|
|
|
|
|
|
|
//find points with high eigenvalue and put it into the output array
|
|
|
|
|
findCorners_caller( |
|
|
|
|
eig_, |
|
|
|
|
eig_minmax_, |
|
|
|
|
static_cast<float>(qualityLevel), |
|
|
|
|
mask, |
|
|
|
|
tmpCorners_, |
|
|
|
|
tmpCorners_.cols); |
|
|
|
|
counter_); |
|
|
|
|
|
|
|
|
|
if(!use_cpu_sorter) |
|
|
|
|
{// sort detected corners on deivce side
|
|
|
|
|
sortCorners_caller(tmpCorners_, corner_array_size); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{// send non-blocking request to read real non-zero number of corners to sort it on the HOST side
|
|
|
|
|
openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(counter_.clCxt), (cl_mem)counter_.data, CL_FALSE, 0,sizeof(int), &total, 0, NULL, NULL)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//blocking read whole corners array (sorted or not sorted)
|
|
|
|
|
openCLReadBuffer(tmpCorners_.clCxt,(cl_mem)tmpCorners_.data,&tmp[0],tmpCorners_.cols*sizeof(DefCorner)); |
|
|
|
|
|
|
|
|
|
if (total == 0) |
|
|
|
|
{ |
|
|
|
|
{// check for trivial case
|
|
|
|
|
corners.release(); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(use_cpu_sorter) |
|
|
|
|
{ |
|
|
|
|
Sorter<CPU_STL>::sortCorners_caller(eig_, tmpCorners_, total); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
//if total is power of 2
|
|
|
|
|
if(((total - 1) & (total)) == 0) |
|
|
|
|
{ |
|
|
|
|
Sorter<BITONIC>::sortCorners_caller(*eig_tex, tmpCorners_, total); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
Sorter<SELECTION>::sortCorners_caller(*eig_tex, tmpCorners_, total); |
|
|
|
|
} |
|
|
|
|
{// sort detected corners on cpu side.
|
|
|
|
|
tmp.resize(total); |
|
|
|
|
cv::sort(tmp,DefCornerCompare()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//estimate maximal size of final output array
|
|
|
|
|
int total_max = maxCorners > 0 ? std::min(maxCorners, total) : total; |
|
|
|
|
int D2 = (int)ceil(minDistance * minDistance); |
|
|
|
|
// allocate output buffer
|
|
|
|
|
vector<Point2f> tmp2; |
|
|
|
|
tmp2.reserve(total_max); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (minDistance < 1) |
|
|
|
|
{ |
|
|
|
|
Rect roi_range(0, 0, maxCorners > 0 ? std::min(maxCorners, total) : total, 1); |
|
|
|
|
tmpCorners_(roi_range).copyTo(corners); |
|
|
|
|
{// we have not distance restriction. then just copy with conversion maximal allowed points into output array
|
|
|
|
|
for(int i=0;i<total_max && tmp[i].eig>0.0f;++i) |
|
|
|
|
{ |
|
|
|
|
tmp2.push_back(Point2f(tmp[i].x,tmp[i].y)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
vector<Point2f> tmp(total); |
|
|
|
|
downloadPoints(tmpCorners_, tmp); |
|
|
|
|
|
|
|
|
|
vector<Point2f> tmp2; |
|
|
|
|
tmp2.reserve(total); |
|
|
|
|
|
|
|
|
|
{// we have distance restriction. then start coping to output array from the first element and check distance for each next one
|
|
|
|
|
const int cell_size = cvRound(minDistance); |
|
|
|
|
const int grid_width = (image.cols + cell_size - 1) / cell_size; |
|
|
|
|
const int grid_height = (image.rows + cell_size - 1) / cell_size; |
|
|
|
|
|
|
|
|
|
std::vector< std::vector<Point2f> > grid(grid_width * grid_height); |
|
|
|
|
std::vector< std::vector<Point2i> > grid(grid_width * grid_height); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < total; ++i) |
|
|
|
|
for (int i = 0; i < total ; ++i) |
|
|
|
|
{ |
|
|
|
|
Point2f p = tmp[i]; |
|
|
|
|
DefCorner p = tmp[i]; |
|
|
|
|
|
|
|
|
|
if(p.eig<=0.0f) |
|
|
|
|
break; // condition to stop that is needed for GPU bitonic sort usage.
|
|
|
|
|
|
|
|
|
|
bool good = true; |
|
|
|
|
|
|
|
|
@ -287,40 +307,42 @@ void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image, |
|
|
|
|
{ |
|
|
|
|
for (int xx = x1; xx <= x2; xx++) |
|
|
|
|
{ |
|
|
|
|
vector<Point2f>& m = grid[yy * grid_width + xx]; |
|
|
|
|
|
|
|
|
|
if (!m.empty()) |
|
|
|
|
vector<Point2i>& m = grid[yy * grid_width + xx]; |
|
|
|
|
if (m.empty()) |
|
|
|
|
continue; |
|
|
|
|
for(size_t j = 0; j < m.size(); j++) |
|
|
|
|
{ |
|
|
|
|
for(size_t j = 0; j < m.size(); j++) |
|
|
|
|
int dx = p.x - m[j].x; |
|
|
|
|
int dy = p.y - m[j].y; |
|
|
|
|
|
|
|
|
|
if (dx * dx + dy * dy < D2) |
|
|
|
|
{ |
|
|
|
|
float dx = p.x - m[j].x; |
|
|
|
|
float dy = p.y - m[j].y; |
|
|
|
|
|
|
|
|
|
if (dx * dx + dy * dy < minDistance * minDistance) |
|
|
|
|
{ |
|
|
|
|
good = false; |
|
|
|
|
goto break_out; |
|
|
|
|
} |
|
|
|
|
good = false; |
|
|
|
|
goto break_out_; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
break_out: |
|
|
|
|
break_out_: |
|
|
|
|
|
|
|
|
|
if(good) |
|
|
|
|
{ |
|
|
|
|
grid[y_cell * grid_width + x_cell].push_back(p); |
|
|
|
|
grid[y_cell * grid_width + x_cell].push_back(Point2i(p.x,p.y)); |
|
|
|
|
|
|
|
|
|
tmp2.push_back(p); |
|
|
|
|
tmp2.push_back(Point2f(p.x,p.y)); |
|
|
|
|
|
|
|
|
|
if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners)) |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
corners.upload(Mat(1, static_cast<int>(tmp2.size()), CV_32FC2, &tmp2[0])); |
|
|
|
|
} |
|
|
|
|
int final_size = static_cast<int>(tmp2.size()); |
|
|
|
|
if(final_size>0) |
|
|
|
|
corners.upload(Mat(1, final_size, CV_32FC2, &tmp2[0])); |
|
|
|
|
else |
|
|
|
|
corners.release(); |
|
|
|
|
} |
|
|
|
|
void cv::ocl::GoodFeaturesToTrackDetector_OCL::downloadPoints(const oclMat &points, vector<Point2f> &points_v) |
|
|
|
|
{ |
|
|
|
|