mirror of https://github.com/opencv/opencv.git
parent
6cb93445e1
commit
a41ac8fd40
1 changed files with 91 additions and 0 deletions
@ -0,0 +1,91 @@ |
||||
#include <opencv2/features2d.hpp> |
||||
#include <opencv2/xfeatures2d.hpp> |
||||
#include <opencv2/imgcodecs.hpp> |
||||
#include <opencv2/opencv.hpp> |
||||
#include <vector> |
||||
#include <iostream> |
||||
|
||||
// If you find this code useful, please add a reference to the following paper in your work:
|
||||
// Gil Levi and Tal Hassner, "LATCH: Learned Arrangements of Three Patch Codes", arXiv preprint arXiv:1501.03719, 15 Jan. 2015
|
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
const float inlier_threshold = 2.5f; // Distance threshold to identify inliers
|
||||
const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio
|
||||
|
||||
int main(void) |
||||
{ |
||||
Mat img1 = imread("../data/graf1.png", IMREAD_GRAYSCALE); |
||||
Mat img2 = imread("../data/graf3.png", IMREAD_GRAYSCALE); |
||||
|
||||
|
||||
Mat homography; |
||||
FileStorage fs("../data/H1to3p.xml", FileStorage::READ); |
||||
|
||||
fs.getFirstTopLevelNode() >> homography; |
||||
|
||||
vector<KeyPoint> kpts1, kpts2; |
||||
Mat desc1, desc2; |
||||
|
||||
Ptr<cv::ORB> orb_detector = cv::ORB::create(10000); |
||||
|
||||
Ptr<xfeatures2d::LATCHDescriptorExtractor> latch = xfeatures2d::LATCHDescriptorExtractor::create(); |
||||
|
||||
|
||||
orb_detector->detect(img1, kpts1); |
||||
latch->compute(img1, kpts1, desc1); |
||||
|
||||
orb_detector->detect(img2, kpts2); |
||||
latch->compute(img2, kpts2, desc2); |
||||
|
||||
BFMatcher matcher(NORM_HAMMING); |
||||
vector< vector<DMatch> > nn_matches; |
||||
matcher.knnMatch(desc1, desc2, nn_matches, 2); |
||||
|
||||
vector<KeyPoint> matched1, matched2, inliers1, inliers2; |
||||
vector<DMatch> good_matches; |
||||
for (size_t i = 0; i < nn_matches.size(); i++) { |
||||
DMatch first = nn_matches[i][0]; |
||||
float dist1 = nn_matches[i][0].distance; |
||||
float dist2 = nn_matches[i][1].distance; |
||||
|
||||
if (dist1 < nn_match_ratio * dist2) { |
||||
matched1.push_back(kpts1[first.queryIdx]); |
||||
matched2.push_back(kpts2[first.trainIdx]); |
||||
} |
||||
} |
||||
|
||||
for (unsigned i = 0; i < matched1.size(); i++) { |
||||
Mat col = Mat::ones(3, 1, CV_64F); |
||||
col.at<double>(0) = matched1[i].pt.x; |
||||
col.at<double>(1) = matched1[i].pt.y; |
||||
|
||||
col = homography * col; |
||||
col /= col.at<double>(2); |
||||
double dist = sqrt(pow(col.at<double>(0) - matched2[i].pt.x, 2) + |
||||
pow(col.at<double>(1) - matched2[i].pt.y, 2)); |
||||
|
||||
if (dist < inlier_threshold) { |
||||
int new_i = static_cast<int>(inliers1.size()); |
||||
inliers1.push_back(matched1[i]); |
||||
inliers2.push_back(matched2[i]); |
||||
good_matches.push_back(DMatch(new_i, new_i, 0)); |
||||
} |
||||
} |
||||
|
||||
Mat res; |
||||
drawMatches(img1, inliers1, img2, inliers2, good_matches, res); |
||||
imwrite("../../samples/data/latch_res.png", res); |
||||
|
||||
double inlier_ratio = inliers1.size() * 1.0 / matched1.size(); |
||||
cout << "LATCH Matching Results" << endl; |
||||
cout << "*******************************" << endl; |
||||
cout << "# Keypoints 1: \t" << kpts1.size() << endl; |
||||
cout << "# Keypoints 2: \t" << kpts2.size() << endl; |
||||
cout << "# Matches: \t" << matched1.size() << endl; |
||||
cout << "# Inliers: \t" << inliers1.size() << endl; |
||||
cout << "# Inliers Ratio: \t" << inlier_ratio << endl; |
||||
cout << endl; |
||||
return 0; |
||||
} |
Loading…
Reference in new issue