parent
c89ae6e537
commit
a3d74704e5
5 changed files with 242 additions and 227 deletions
@ -0,0 +1,195 @@ |
|||||||
|
// This file is part of OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
//
|
||||||
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
|
||||||
|
#include "test_precomp.hpp" |
||||||
|
#include "opencv2/core/ocl.hpp" |
||||||
|
|
||||||
|
namespace cvtest { |
||||||
|
|
||||||
|
using namespace cv; |
||||||
|
using namespace dnn; |
||||||
|
using namespace testing; |
||||||
|
|
||||||
|
CV_ENUM(DNNBackend, DNN_BACKEND_DEFAULT, DNN_BACKEND_HALIDE) |
||||||
|
CV_ENUM(DNNTarget, DNN_TARGET_CPU, DNN_TARGET_OPENCL) |
||||||
|
|
||||||
|
static void loadNet(const std::string& weights, const std::string& proto, |
||||||
|
const std::string& framework, Net* net) |
||||||
|
{ |
||||||
|
if (framework == "caffe") |
||||||
|
*net = cv::dnn::readNetFromCaffe(proto, weights); |
||||||
|
else if (framework == "torch") |
||||||
|
*net = cv::dnn::readNetFromTorch(weights); |
||||||
|
else if (framework == "tensorflow") |
||||||
|
*net = cv::dnn::readNetFromTensorflow(weights, proto); |
||||||
|
else |
||||||
|
CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); |
||||||
|
} |
||||||
|
|
||||||
|
class DNNTestNetwork : public TestWithParam <tuple<DNNBackend, DNNTarget> > |
||||||
|
{ |
||||||
|
public: |
||||||
|
dnn::Backend backend; |
||||||
|
dnn::Target target; |
||||||
|
|
||||||
|
DNNTestNetwork() |
||||||
|
{ |
||||||
|
backend = (dnn::Backend)(int)get<0>(GetParam()); |
||||||
|
target = (dnn::Target)(int)get<1>(GetParam()); |
||||||
|
} |
||||||
|
|
||||||
|
void processNet(const std::string& weights, const std::string& proto, |
||||||
|
Size inpSize, const std::string& outputLayer, |
||||||
|
const std::string& framework, const std::string& halideScheduler = "", |
||||||
|
double l1 = 1e-5, double lInf = 1e-4) |
||||||
|
{ |
||||||
|
// Create a common input blob.
|
||||||
|
int blobSize[] = {1, 3, inpSize.height, inpSize.width}; |
||||||
|
Mat inp(4, blobSize, CV_32FC1); |
||||||
|
randu(inp, 0.0f, 1.0f); |
||||||
|
|
||||||
|
processNet(weights, proto, inp, outputLayer, framework, halideScheduler, l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
void processNet(std::string weights, std::string proto, |
||||||
|
Mat inp, const std::string& outputLayer, |
||||||
|
const std::string& framework, std::string halideScheduler = "", |
||||||
|
double l1 = 1e-5, double lInf = 1e-4) |
||||||
|
{ |
||||||
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL) |
||||||
|
{ |
||||||
|
#ifdef HAVE_OPENCL |
||||||
|
if (!cv::ocl::useOpenCL()) |
||||||
|
#endif |
||||||
|
{ |
||||||
|
throw SkipTestException("OpenCL is not available/disabled in OpenCV"); |
||||||
|
} |
||||||
|
} |
||||||
|
weights = findDataFile(weights, false); |
||||||
|
if (!proto.empty()) |
||||||
|
proto = findDataFile(proto, false); |
||||||
|
|
||||||
|
// Create two networks - with default backend and target and a tested one.
|
||||||
|
Net netDefault, net; |
||||||
|
loadNet(weights, proto, framework, &netDefault); |
||||||
|
loadNet(weights, proto, framework, &net); |
||||||
|
|
||||||
|
netDefault.setInput(inp); |
||||||
|
Mat outDefault = netDefault.forward(outputLayer).clone(); |
||||||
|
|
||||||
|
net.setInput(inp); |
||||||
|
net.setPreferableBackend(backend); |
||||||
|
net.setPreferableTarget(target); |
||||||
|
if (backend == DNN_BACKEND_HALIDE && !halideScheduler.empty()) |
||||||
|
{ |
||||||
|
halideScheduler = findDataFile(halideScheduler, false); |
||||||
|
net.setHalideScheduler(halideScheduler); |
||||||
|
} |
||||||
|
Mat out = net.forward(outputLayer).clone(); |
||||||
|
|
||||||
|
if (outputLayer == "detection_out") |
||||||
|
checkDetections(outDefault, out, "First run", l1, lInf); |
||||||
|
else |
||||||
|
normAssert(outDefault, out, "First run", l1, lInf); |
||||||
|
|
||||||
|
// Test 2: change input.
|
||||||
|
inp *= 0.1f; |
||||||
|
netDefault.setInput(inp); |
||||||
|
net.setInput(inp); |
||||||
|
outDefault = netDefault.forward(outputLayer).clone(); |
||||||
|
out = net.forward(outputLayer).clone(); |
||||||
|
|
||||||
|
if (outputLayer == "detection_out") |
||||||
|
checkDetections(outDefault, out, "Second run", l1, lInf); |
||||||
|
else |
||||||
|
normAssert(outDefault, out, "Second run", l1, lInf); |
||||||
|
} |
||||||
|
|
||||||
|
void checkDetections(const Mat& out, const Mat& ref, const std::string& msg, |
||||||
|
float l1, float lInf, int top = 5) |
||||||
|
{ |
||||||
|
top = std::min(std::min(top, out.size[2]), out.size[3]); |
||||||
|
std::vector<cv::Range> range(4, cv::Range::all()); |
||||||
|
range[2] = cv::Range(0, top); |
||||||
|
normAssert(out(range), ref(range)); |
||||||
|
} |
||||||
|
}; |
||||||
|
|
||||||
|
TEST_P(DNNTestNetwork, AlexNet) |
||||||
|
{ |
||||||
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", |
||||||
|
Size(227, 227), "prob", "caffe", |
||||||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_alexnet.yml" : |
||||||
|
"dnn/halide_scheduler_alexnet.yml"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(DNNTestNetwork, ResNet_50) |
||||||
|
{ |
||||||
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", |
||||||
|
Size(224, 224), "prob", "caffe", |
||||||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_resnet_50.yml" : |
||||||
|
"dnn/halide_scheduler_resnet_50.yml"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(DNNTestNetwork, SqueezeNet_v1_1) |
||||||
|
{ |
||||||
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", |
||||||
|
Size(227, 227), "prob", "caffe", |
||||||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_squeezenet_v1_1.yml" : |
||||||
|
"dnn/halide_scheduler_squeezenet_v1_1.yml"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(DNNTestNetwork, GoogLeNet) |
||||||
|
{ |
||||||
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", |
||||||
|
Size(224, 224), "prob", "caffe"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(DNNTestNetwork, Inception_5h) |
||||||
|
{ |
||||||
|
processNet("dnn/tensorflow_inception_graph.pb", "", Size(224, 224), "softmax2", "tensorflow", |
||||||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_inception_5h.yml" : |
||||||
|
"dnn/halide_scheduler_inception_5h.yml"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(DNNTestNetwork, ENet) |
||||||
|
{ |
||||||
|
processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", "torch", |
||||||
|
target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" : |
||||||
|
"dnn/halide_scheduler_enet.yml", |
||||||
|
2e-5, 0.15); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(DNNTestNetwork, MobileNetSSD) |
||||||
|
{ |
||||||
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
||||||
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
||||||
|
|
||||||
|
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", |
||||||
|
inp, "detection_out", "caffe"); |
||||||
|
} |
||||||
|
|
||||||
|
TEST_P(DNNTestNetwork, SSD_VGG16) |
||||||
|
{ |
||||||
|
if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL || |
||||||
|
backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) |
||||||
|
throw SkipTestException(""); |
||||||
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", |
||||||
|
"dnn/ssd_vgg16.prototxt", Size(300, 300), "detection_out", "caffe"); |
||||||
|
} |
||||||
|
|
||||||
|
const tuple<DNNBackend, DNNTarget> testCases[] = { |
||||||
|
#ifdef HAVE_HALIDE |
||||||
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU), |
||||||
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_OPENCL), |
||||||
|
#endif |
||||||
|
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_DEFAULT, DNN_TARGET_OPENCL) |
||||||
|
}; |
||||||
|
|
||||||
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, ValuesIn(testCases)); |
||||||
|
|
||||||
|
} // namespace cvtest
|
@ -1,205 +0,0 @@ |
|||||||
// This file is part of OpenCV project.
|
|
||||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
||||||
// of this distribution and at http://opencv.org/license.html.
|
|
||||||
//
|
|
||||||
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
||||||
// Third party copyrights are property of their respective owners.
|
|
||||||
|
|
||||||
#include "test_precomp.hpp" |
|
||||||
|
|
||||||
namespace cvtest |
|
||||||
{ |
|
||||||
|
|
||||||
#ifdef HAVE_HALIDE |
|
||||||
using namespace cv; |
|
||||||
using namespace dnn; |
|
||||||
|
|
||||||
static void loadNet(const std::string& weights, const std::string& proto, |
|
||||||
const std::string& framework, Net* net) |
|
||||||
{ |
|
||||||
if (framework == "caffe") |
|
||||||
{ |
|
||||||
*net = cv::dnn::readNetFromCaffe(proto, weights); |
|
||||||
} |
|
||||||
else if (framework == "torch") |
|
||||||
{ |
|
||||||
*net = cv::dnn::readNetFromTorch(weights); |
|
||||||
} |
|
||||||
else if (framework == "tensorflow") |
|
||||||
{ |
|
||||||
*net = cv::dnn::readNetFromTensorflow(weights); |
|
||||||
} |
|
||||||
else |
|
||||||
CV_Error(Error::StsNotImplemented, "Unknown framework " + framework); |
|
||||||
} |
|
||||||
|
|
||||||
static void test(const std::string& weights, const std::string& proto, |
|
||||||
const std::string& scheduler, int inWidth, int inHeight, |
|
||||||
const std::string& outputLayer, const std::string& framework, |
|
||||||
int targetId, double l1 = 1e-5, double lInf = 1e-4) |
|
||||||
{ |
|
||||||
Mat input(inHeight, inWidth, CV_32FC3), outputDefault, outputHalide; |
|
||||||
randu(input, 0.0f, 1.0f); |
|
||||||
|
|
||||||
Net netDefault, netHalide; |
|
||||||
loadNet(weights, proto, framework, &netDefault); |
|
||||||
loadNet(weights, proto, framework, &netHalide); |
|
||||||
|
|
||||||
netDefault.setInput(blobFromImage(input.clone(), 1.0f, Size(), Scalar(), false)); |
|
||||||
outputDefault = netDefault.forward(outputLayer).clone(); |
|
||||||
|
|
||||||
netHalide.setInput(blobFromImage(input.clone(), 1.0f, Size(), Scalar(), false)); |
|
||||||
netHalide.setPreferableBackend(DNN_BACKEND_HALIDE); |
|
||||||
netHalide.setPreferableTarget(targetId); |
|
||||||
netHalide.setHalideScheduler(scheduler); |
|
||||||
outputHalide = netHalide.forward(outputLayer).clone(); |
|
||||||
|
|
||||||
normAssert(outputDefault, outputHalide, "First run", l1, lInf); |
|
||||||
|
|
||||||
// An extra test: change input.
|
|
||||||
input *= 0.1f; |
|
||||||
netDefault.setInput(blobFromImage(input.clone(), 1.0, Size(), Scalar(), false)); |
|
||||||
netHalide.setInput(blobFromImage(input.clone(), 1.0, Size(), Scalar(), false)); |
|
||||||
|
|
||||||
normAssert(outputDefault, outputHalide, "Second run", l1, lInf); |
|
||||||
std::cout << "." << std::endl; |
|
||||||
|
|
||||||
// Swap backends.
|
|
||||||
netHalide.setPreferableBackend(DNN_BACKEND_DEFAULT); |
|
||||||
netHalide.setPreferableTarget(DNN_TARGET_CPU); |
|
||||||
outputDefault = netHalide.forward(outputLayer).clone(); |
|
||||||
|
|
||||||
netDefault.setPreferableBackend(DNN_BACKEND_HALIDE); |
|
||||||
netDefault.setPreferableTarget(targetId); |
|
||||||
netDefault.setHalideScheduler(scheduler); |
|
||||||
outputHalide = netDefault.forward(outputLayer).clone(); |
|
||||||
|
|
||||||
normAssert(outputDefault, outputHalide, "Swap backends", l1, lInf); |
|
||||||
} |
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// CPU target
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
|
||||||
TEST(Reproducibility_MobileNetSSD_Halide, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false), |
|
||||||
findDataFile("dnn/MobileNetSSD_deploy.prototxt", false), |
|
||||||
"", 300, 300, "detection_out", "caffe", DNN_TARGET_CPU); |
|
||||||
}; |
|
||||||
|
|
||||||
// TODO: Segmentation fault from time to time.
|
|
||||||
// TEST(Reproducibility_SSD_Halide, Accuracy)
|
|
||||||
// {
|
|
||||||
// test(findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false),
|
|
||||||
// findDataFile("dnn/ssd_vgg16.prototxt", false),
|
|
||||||
// "", 300, 300, "detection_out", "caffe", DNN_TARGET_CPU);
|
|
||||||
// };
|
|
||||||
|
|
||||||
TEST(Reproducibility_GoogLeNet_Halide, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/bvlc_googlenet.caffemodel", false), |
|
||||||
findDataFile("dnn/bvlc_googlenet.prototxt", false), |
|
||||||
"", 224, 224, "prob", "caffe", DNN_TARGET_CPU); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_AlexNet_Halide, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/bvlc_alexnet.caffemodel", false), |
|
||||||
findDataFile("dnn/bvlc_alexnet.prototxt", false), |
|
||||||
findDataFile("dnn/halide_scheduler_alexnet.yml", false), |
|
||||||
227, 227, "prob", "caffe", DNN_TARGET_CPU); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_ResNet_50_Halide, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/ResNet-50-model.caffemodel", false), |
|
||||||
findDataFile("dnn/ResNet-50-deploy.prototxt", false), |
|
||||||
findDataFile("dnn/halide_scheduler_resnet_50.yml", false), |
|
||||||
224, 224, "prob", "caffe", DNN_TARGET_CPU); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_SqueezeNet_v1_1_Halide, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/squeezenet_v1.1.caffemodel", false), |
|
||||||
findDataFile("dnn/squeezenet_v1.1.prototxt", false), |
|
||||||
findDataFile("dnn/halide_scheduler_squeezenet_v1_1.yml", false), |
|
||||||
227, 227, "prob", "caffe", DNN_TARGET_CPU); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_Inception_5h_Halide, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/tensorflow_inception_graph.pb", false), "", |
|
||||||
findDataFile("dnn/halide_scheduler_inception_5h.yml", false), |
|
||||||
224, 224, "softmax2", "tensorflow", DNN_TARGET_CPU); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_ENet_Halide, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/Enet-model-best.net", false), "", |
|
||||||
findDataFile("dnn/halide_scheduler_enet.yml", false), |
|
||||||
512, 512, "l367_Deconvolution", "torch", DNN_TARGET_CPU, 2e-5, 0.15); |
|
||||||
}; |
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
|
||||||
// OpenCL target
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
|
||||||
TEST(Reproducibility_MobileNetSSD_Halide_opencl, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/MobileNetSSD_deploy.caffemodel", false), |
|
||||||
findDataFile("dnn/MobileNetSSD_deploy.prototxt", false), |
|
||||||
"", 300, 300, "detection_out", "caffe", DNN_TARGET_OPENCL); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_SSD_Halide_opencl, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", false), |
|
||||||
findDataFile("dnn/ssd_vgg16.prototxt", false), |
|
||||||
"", 300, 300, "detection_out", "caffe", DNN_TARGET_OPENCL); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_GoogLeNet_Halide_opencl, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/bvlc_googlenet.caffemodel", false), |
|
||||||
findDataFile("dnn/bvlc_googlenet.prototxt", false), |
|
||||||
"", 227, 227, "prob", "caffe", DNN_TARGET_OPENCL); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_AlexNet_Halide_opencl, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/bvlc_alexnet.caffemodel", false), |
|
||||||
findDataFile("dnn/bvlc_alexnet.prototxt", false), |
|
||||||
findDataFile("dnn/halide_scheduler_opencl_alexnet.yml", false), |
|
||||||
227, 227, "prob", "caffe", DNN_TARGET_OPENCL); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_ResNet_50_Halide_opencl, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/ResNet-50-model.caffemodel", false), |
|
||||||
findDataFile("dnn/ResNet-50-deploy.prototxt", false), |
|
||||||
findDataFile("dnn/halide_scheduler_opencl_resnet_50.yml", false), |
|
||||||
224, 224, "prob", "caffe", DNN_TARGET_OPENCL); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_SqueezeNet_v1_1_Halide_opencl, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/squeezenet_v1.1.caffemodel", false), |
|
||||||
findDataFile("dnn/squeezenet_v1.1.prototxt", false), |
|
||||||
findDataFile("dnn/halide_scheduler_opencl_squeezenet_v1_1.yml", false), |
|
||||||
227, 227, "prob", "caffe", DNN_TARGET_OPENCL); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_Inception_5h_Halide_opencl, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/tensorflow_inception_graph.pb", false), "", |
|
||||||
findDataFile("dnn/halide_scheduler_opencl_inception_5h.yml", false), |
|
||||||
224, 224, "softmax2", "tensorflow", DNN_TARGET_OPENCL); |
|
||||||
}; |
|
||||||
|
|
||||||
TEST(Reproducibility_ENet_Halide_opencl, Accuracy) |
|
||||||
{ |
|
||||||
test(findDataFile("dnn/Enet-model-best.net", false), "", |
|
||||||
findDataFile("dnn/halide_scheduler_opencl_enet.yml", false), |
|
||||||
512, 512, "l367_Deconvolution", "torch", DNN_TARGET_OPENCL, 2e-5, 0.14); |
|
||||||
}; |
|
||||||
#endif // HAVE_HALIDE
|
|
||||||
|
|
||||||
} // namespace cvtest
|
|
Loading…
Reference in new issue