Merge pull request #24322 from Abdurrahheem:ash/dev_einsum_ellips

Ellipses supported added for Einsum Layer #24322

This PR added addresses issues not covered in #24037. Namely these are: 
Test case for this patch is in this PR [#1106](https://github.com/opencv/opencv_extra/pull/1106) in opencv extra

Added: 
 - [x] Broadcasting reduction "...ii ->...I"
 - [x] Add lazy shape deduction. "...ij, ...jk->...ik"
 
 Features to add: 
- [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik")
- [ ] Add support for CUDA backend 
- [ ] BatchWiseMultiply optimize
- [ ] Performance test

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
pull/24446/head
Abduragim Shtanchaev 1 year ago committed by GitHub
parent 1fe0fc224c
commit a3b3a589f9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 393
      modules/dnn/src/layers/einsum_layer.cpp
  2. 1
      modules/dnn/test/test_onnx_conformance_layer_parser_denylist.inl.hpp
  3. 7
      modules/dnn/test/test_onnx_importer.cpp

@ -32,15 +32,14 @@ static bool IsTransposeReshapeForEinsum(const std::vector<size_t>& perm,
return true;
}
Mat batchwiseMatMul(
static Mat batchwiseMatMul(
const Mat& input1,
const MatShape& input1ShapeOverride,
const Mat& input2,
const MatShape& input2ShapeOverride)
{
// Sanity checks before the actual MatMul
//input_1.DataType() == input_2.DataType(), "Data types of the inputs must match for MatMul");
CV_CheckType(input1.type(), input2.type(), "Data types of the inputs must match for MatMul");
CV_CheckEQ(input1ShapeOverride.size(), (size_t) 3, "Only 1 batch dimension is allowed for MatMul");
CV_CheckEQ(input2ShapeOverride.size(), (size_t) 3, "Only 1 batch dimension is allowed for MatMul");
CV_CheckEQ((size_t) input1ShapeOverride[0], (size_t) input2ShapeOverride[0], "Batch dimension should match for MatMul;");
@ -51,8 +50,6 @@ Mat batchwiseMatMul(
size_t K = input1ShapeOverride[2];
size_t N = input2ShapeOverride[2];
//TODO: deal with dynamic shapes
//TODO: deal with reshaping operation (it might not always be needed)
std::vector<Mat> output;
if (batches > 1)
{
@ -141,26 +138,19 @@ Mat batchwiseMatMul(
return output_buffer;
};
Mat Transpose(
const cv::Mat& input,
static Mat Transpose(
const Mat& input,
const MatShape& input_shape_override,
const std::vector<size_t> permutation)
{
int input_rank = input_shape_override.size();
CV_Assert(input_rank == permutation.size());
// TODO: ouptimize
bool reshape = false;
if (input.dims != input_shape_override.size())
{
reshape = true;
}
bool reshape = input.dims != input_rank;
Mat input_reshaped;
if(reshape)
{
if(reshape){
input_reshaped = input.reshape(1, input_shape_override.size(), input_shape_override.data());
}
@ -170,13 +160,9 @@ Mat Transpose(
outputDims.emplace_back(input_shape_override[dim]);
Mat output;
// TODO: ouptimize
MatShape tmp_perm;
tmp_perm.reserve(permutation.size());
for (int i = 0; i < permutation.size(); i++)
tmp_perm.emplace_back(static_cast<int>(permutation[i]));
MatShape order(permutation.begin(), permutation.end());
cv::transposeND((reshape ? input_reshaped : input), tmp_perm, output);
cv::transposeND((reshape ? input_reshaped : input), order, output);
return output;
}
@ -201,12 +187,183 @@ bool IsTransposeRequired(size_t input_rank, const std::vector<size_t>& permutati
return transpose_required;
}
Mat Diagonal(
const cv::Mat& input,
int subscriptIndicesToInputIndex,
int dimIndexInIreprocessedInput)
bool IsTransposeRequiredForDiagonal(int dim1, int dim2, int rank) {
// If the input is 2D, we don't need a transpose
if (rank == 2)
return false;
// If the two dims are the innermost dims, no transpose is required
if ((dim1 == rank - 1 && dim2 == rank - 2) ||
(dim1 == rank - 2 && dim2 == rank - 1))
return false;
// Transpose is required
return true;
}
template <typename T>
Mat DiagonalDataAssignment(Mat input) {
int rank = input.dims;
CV_Assert(rank >= 2);
CV_Assert(input.size[rank - 1] == input.size[rank - 2]);
MatShape original_dims = shape(input);
if (rank > 3){
//reshape to 3D mat
int collapsed_size = 1;
for (int i = 0; i < rank - 2; ++i) {
collapsed_size *= input.size[i];
}
std::vector<int> reshaped_dims = {collapsed_size, input.size[rank - 2], input.size[rank - 1]};
input = input.reshape(1, reshaped_dims);
}
// Compute total number of higher-dimensional slices
int total_slices = input.size[0];
original_dims[rank - 1] = 1; // Set the last dimension to 1, as we have extracted the diagonal
Mat output = Mat(original_dims, input.type());
int inner_stride = input.size[input.dims - 1];
auto inputPtr = input.ptr<T>();
auto outputPtr = output.ptr<T>();
for (int slice = 0; slice < total_slices; ++slice) {
for (int j = 0; j < inner_stride; ++j) {
// Direct memory access using raw pointers
outputPtr[slice * inner_stride + j] = inputPtr[slice * inner_stride * inner_stride + j * inner_stride + j];
}
}
return output;
}
/* Extract the diagonal elements from the last two dimensions of the tensor.
For instance, given an input_shape of [1, 2, 3, 3]:
The flexibility in this implementation allows one to choose which of the two
last dimensions retains its value, determined by the `preserve_innermost_dim_val` parameter.
When preserve_innermost_dim_val == true:
The resulting shape is [1, 2, 1, 3], indicating the diagonal has 3 elements,
and it keeps the dimension value of the innermost dimension.
When preserve_innermost_dim_val == false:
The resulting shape is [1, 2, 3, 1], indicating the diagonal also has 3 elements,
but it retains the dimension value of the penultimate dimension. */
Mat DiagonalInnermostDims(const Mat& input, bool preserve_innermost_dim_val) {
const MatShape input_dims = shape(input);
int rank = input_dims.size();
// This is an internal method and we already have finished all validations in the calling method.
// We proceed without duplicating all validations again here.
// We have a minimalistic check here to make sure the innermost dims have the same dim value
// as the calling method may have done a transpose before calling this method
CV_CheckEQ(input.size[rank - 1], input.size[rank - 2],
"innermost dims should have the same dim value to parse the diagonal elements");
MatShape output_dims = input_dims; // Copy the original dims
if (preserve_innermost_dim_val) {
output_dims[rank - 2] = 1;
} else {
output_dims[rank - 1] = 1;
}
// TODO: hande different types
Mat output = DiagonalDataAssignment<float>(input);
if (output_dims != shape(output)){
CV_Error(Error::StsError, "Output shape does not match with calculated shape");
}
return output;
}
Mat Diagonal(const Mat& input, int dim1, int dim2)
{
CV_Error(Error::StsNotImplemented, "Diagonal Not Implemented Yet");
const MatShape input_dims = shape(input);
int rank = input_dims.size();
if (!(rank >= 2 && dim1 != dim2 && input_dims[dim1] == input_dims[dim2])){
std::string input_dims_str = std::accumulate(std::next(input_dims.begin()), input_dims.end(), std::to_string(input_dims[0]),
[](const std::string& a, int b) {
return a + ' ' + std::to_string(b);
});
CV_Error(Error::StsError, cv::format("Cannot parse the diagonal elements along dims %d and %d for input shape %s",dim1, dim2, input_dims_str.c_str()));
}
int first_dim = std::min(dim1, dim2);
int second_dim = std::max(dim1, dim2);
Mat output;
bool preserve_innermost_dim_val = false;
bool is_transpose_required = IsTransposeRequiredForDiagonal(dim1, dim2, rank);
if (is_transpose_required)
{
std::vector<size_t> permutation(rank, 0);
int first_dim_axis = -1; // This is the axis eventually occupied by the first_dim
// If one of the diagonal dimensions is one of the 2 innermost dims, then leave it as such
// so as to avoid transpose overhead
if (first_dim == rank - 2) { // If rank - 2 is occupied by first_dim, keep it there
permutation[rank - 2] = first_dim;
first_dim_axis = rank - 2;
} else {
if (second_dim != rank - 2) { // If rank - 2 is not occupied by second_dim, then put first_dim there
permutation[rank - 2] = first_dim;
first_dim_axis = rank - 2;
} else { // If rank - 2 is occupied by second_dim, then put first_dim in rank - 1
permutation[rank - 1] = first_dim;
first_dim_axis = rank - 1;
preserve_innermost_dim_val = true; // We always want to preserve the dim value of the first_dim
}
}
// Put the second_dim in the dim not occupied by the first_dim
if (first_dim_axis != rank - 1) {
permutation[rank - 1] = second_dim;
} else {
permutation[rank - 2] = second_dim;
}
size_t iter = 0;
for (int i = 0; i < rank; ++i) {
if (i != first_dim && i != second_dim) {
permutation[iter++] = i;
}
}
// Permutate the input so that the dims from which we need the diagonal forms the innermost dims
Mat transposed = Transpose(input, input_dims, permutation);
// Parse the diagonal from the innermost dims
output = DiagonalInnermostDims(transposed, preserve_innermost_dim_val);
// Swap back the dimensions to the original axes ordering using a "reverse permutation"
// Find the "reverse" permutation
iter = 0;
std::vector<size_t> reverse_permutation(rank, 0);
for (const auto& perm : permutation) {
reverse_permutation[perm] = iter++;
}
// Permutate using the reverse permutation to get back the original axes ordering
// (Pass in CPU Transpose function here as this Diagonal method will only be used for CPU based diagonal parsing)
output = Transpose(output, shape(output), reverse_permutation);
} else {
// No transposing required
output = DiagonalInnermostDims(input, preserve_innermost_dim_val);
}
// Make copy of the output dims
MatShape output_dims = shape(output);
// Unsqueeze the reduced dim
auto iter = output_dims.begin() + second_dim;
output_dims.erase(iter);
output = output.reshape(1, output_dims);
return output;
}
/**
@ -299,7 +456,7 @@ public:
void parseEquation(String equation);
void processEquation(const std::vector<MatShape>& inputs);
void processBroadcastedDims();
void createOutputSubsctipt();
void validateOutputSubscript();
void calculateOutputShape();
void preProcessInputs(InputArrayOfArrays& inputs);
Mat reduceSum(Mat& src, MatShape& reduceAxis);
@ -358,7 +515,7 @@ public:
processBroadcastedDims();
// calculate output shape
createOutputSubsctipt();
validateOutputSubscript();
calculateOutputShape();
}
@ -624,7 +781,7 @@ void LayerEinsumImpl::calculateOutputShape()
{
// Traverse through each of the subscript labels within the output subscript.
bool middleOfEllipsis = false;
// int64_t ellipsisCharCount = 0;
int ellipsisCharCount = 0;
subscriptIndicesToOutputIndices.resize(numLetterIndices, -1);
@ -636,7 +793,21 @@ void LayerEinsumImpl::calculateOutputShape()
{
if(letter == '.')
{
CV_Error(Error::StsNotImplemented, "Ellipsis are not supported yet");
middleOfEllipsis = true;
// Make sure there aren't more than 3 '.'s in the current subscript
if (++ellipsisCharCount > 3) {
CV_Error(Error::StsError, "Found a '.' not part of an ellipsis in the output subscript provided");
}
if (ellipsisCharCount == 3) { // Ellipsis is complete. Process it.
middleOfEllipsis = false;
for (size_t i = 0; i < numOfEllipsisDims; ++i) {
einsumOutDims.emplace_back(subscriptIndicesToDimValue[i]);
// The ellipsis is seen in the output and hence the corresponding dims are to not be reduced
subscriptIndicesToLastInput[i] = -1;
subscriptIndicesToOutputIndices[i] = outputDimCounter++;
}
}
} else {
CV_CheckEQ(middleOfEllipsis, false,
"Encountered '.' character that is not part of output subscript");
@ -666,7 +837,7 @@ void LayerEinsumImpl::calculateOutputShape()
}
}
void LayerEinsumImpl::createOutputSubsctipt()
void LayerEinsumImpl::validateOutputSubscript()
{
// The explicit form requires no operation, as the output
// would have already been parsed during the input parsing process.
@ -679,8 +850,6 @@ void LayerEinsumImpl::createOutputSubsctipt()
{
CV_Error(Error::StsError,
"Provided output subscript does not include ellipsis while Inputs subscrits constain ellipsis");
} else {
CV_Error(Error::StsNotImplemented, "Ellipsis are not yet supported");
}
}
}
@ -689,9 +858,84 @@ void LayerEinsumImpl::createOutputSubsctipt()
void LayerEinsumImpl::processBroadcastedDims()
{
// Only compute this function if ellipsis "..." was found in the equation
if (numOfEllipsisDims > 0){
// add assert inplace of return bool
CV_Error(Error::StsError, "Ellipsis are not supperted currenly");
if (numOfEllipsisDims > 0)
{
// extend the number of subscript labels to include each ellipsis dim as
// theoretically each ellipsis dim does correspond to a "virtual" subscript label
numLetterIndices += numOfEllipsisDims;
// We are going to assign the broadcasted dims outermost subscript indices (i.e.) 0 -> numOfEllipsisDims - 1
// as most likely bradcasted dims will be batch dimensions (i.e.) outermost dimensions and hence we don't have to pay
// transposing while "homogenizing" the input
// Hence offset all subscript indices by numOfEllipsisDims
for (size_t i = 0; i < numOfLetters; ++i){
if (letter2count[i] != -1){
letter2index[i] += numOfEllipsisDims;
}
}
std::vector<int> tempIndex2LastInput(numLetterIndices, -1);
for (int i = 0; i < subscriptIndicesToLastInput.size(); ++i){
tempIndex2LastInput[i + numOfEllipsisDims] = subscriptIndicesToLastInput[i];
}
subscriptIndicesToLastInput = std::move(tempIndex2LastInput);
std::vector<int> tempIndexToDimValue(numLetterIndices, -1);
for (int i = 0; i < subscriptIndicesToDimValue.size(); ++i){
tempIndexToDimValue[i + numOfEllipsisDims] = subscriptIndicesToDimValue[i];
}
subscriptIndicesToDimValue = std::move(tempIndexToDimValue);
for (size_t i = 0; i < inputSubscriptIndices.size(); ++i)
{
auto& currentInputDimIndicesToSubscriptIndices = inputSubscriptIndices[i];
std::vector<int> tempCurrentInputDimIndicesToSubscriptIndices;
tempCurrentInputDimIndicesToSubscriptIndices.reserve(currentInputDimIndicesToSubscriptIndices.size());
// make sure it is correct
const auto& dims = einsumInpShapes[i];
auto rank = dims.size();
size_t dimIter = 0;
size_t numBroadcastedIndices = 0;
while (dimIter < currentInputDimIndicesToSubscriptIndices.size())
{
auto value = currentInputDimIndicesToSubscriptIndices[dimIter];
if (value == numOfLetters)
{ // This is a broadcasted dim
// Shouldn't hit this error - just a sanity check
CV_Assert(numBroadcastedIndices < numOfEllipsisDims);
tempCurrentInputDimIndicesToSubscriptIndices.push_back(static_cast<int>(numBroadcastedIndices));
subscriptIndicesToLastInput[numBroadcastedIndices] = i;
// This is the first time we are seeing this broadcasted dim
if (subscriptIndicesToDimValue[numBroadcastedIndices] == -1)
{
subscriptIndicesToDimValue[numBroadcastedIndices] = dims[dimIter];
} else { // We have seen this broadcasted dim before
// Check if the previous value is equal to the current value
if (subscriptIndicesToDimValue[numBroadcastedIndices] != dims[dimIter])
{
// If they are not equal, one of them needs to be 1
if (subscriptIndicesToDimValue[numBroadcastedIndices] == 1)
{
subscriptIndicesToDimValue[numBroadcastedIndices] = dims[dimIter];
} else {
CV_CheckEQ(dims[dimIter], 1, "The broadcasted dimensions of the inputs are incompatible");
}
}
}
++numBroadcastedIndices;
} else { // This is a regular dim - offset it by number of broadcasted dims
tempCurrentInputDimIndicesToSubscriptIndices.push_back(value + static_cast<int>(numOfEllipsisDims));
}
++dimIter;
}
// Shouldn't hit this error - just a sanity check
CV_Assert(dimIter == rank);
currentInputDimIndicesToSubscriptIndices = std::move(tempCurrentInputDimIndicesToSubscriptIndices);
}
}
}
@ -718,18 +962,58 @@ void LayerEinsumImpl::processEquation(const std::vector<MatShape>& inputs)
// Variable to deal with "ellipsis" - '...' in the input
bool middleOfellipsis = false;
int ellipsisCharCount = 0;
for (auto letter : token)
{
// Broadcasting based tokens are not implemented yet
if (letter == '.')
{
CV_Error(Error::StsNotImplemented,
"Broad casting based indices are not supported currently");
} else
{
middleOfellipsis = true;
// there should not be more than 3 '.'s in the current subscript
if (++ellipsisCharCount > 3)
{
CV_Error(Error::StsError, cv::format("Found a '.' not part of an ellipsis in input: %d", inputIdx));
}
if (middleOfellipsis)
// We have seen all 3 '.'s. We can safely process the ellipsis now.
if (ellipsisCharCount == 3)
{
middleOfellipsis = false;
// Example for the following line of code
// Subscript "...ij" for an input of rank 6
// numOfEllipsisDims = 6 - 5 + 3 = 4
int currentNumOfEllipsisDims = static_cast<int>(rank) - token.length() + 3;
CV_CheckGE(currentNumOfEllipsisDims, 0,
"Einsum subscripts string contains too many subscript labels when compared to the rank of the input");
// Theoretically, currentNumOfEllipsisDims could be 0
// Example: For an input of rank 2 paired with a subscript "...ij"
if (currentNumOfEllipsisDims != 0)
{
// We have seen a ellipsis before - make sure ranks align as per the ONNX spec -
// "Ellipsis must indicate a fixed number of dimensions."
if (numOfEllipsisDims != 0){
CV_CheckEQ(numOfEllipsisDims, static_cast<size_t>(currentNumOfEllipsisDims),
"Ellipsis must indicate a fixed number of dimensions across all inputs");
} else {
numOfEllipsisDims = static_cast<size_t>(currentNumOfEllipsisDims);
}
// We reserve 'numOfLetters' for broadcasted dims as we only allow 'a' - 'z'
// and 'A' - 'Z' (0 - 51) for non-broadcasted dims.
// We will assign appropriate indices (based on number of dimensions the ellipsis corresponds to)
// during broadcasting related post-processing.
for (size_t i = 0; i < numOfEllipsisDims; ++i){
currTokenIndices.push_back(numOfLetters);
}
// Offset 'dim_count' by number of dimensions the ellipsis corresponds to
dim_count += numOfEllipsisDims;
}
}
} else {
if (middleOfellipsis){
CV_Error(Error::StsAssert,
cv::format(
"Encountered '.' character that is not part of an ellipsis in the input: [%d]",
@ -744,8 +1028,7 @@ void LayerEinsumImpl::processEquation(const std::vector<MatShape>& inputs)
// The subscript label was not found in the global subscript label array
// Therefore, it is added to both the local and global subscript arrays
if(letter2count[letterIdx] == 0)
{
if(letter2count[letterIdx] == 0){
letter2index[letterIdx] = numLetterIndices++;
subscriptIndicesToDimValue.push_back(dimValue);
subscriptIndicesToLastInput.push_back(inputIdx);
@ -756,20 +1039,12 @@ void LayerEinsumImpl::processEquation(const std::vector<MatShape>& inputs)
auto mappedIndx = letter2index[letterIdx];
subscriptIndicesToLastInput[mappedIndx] = inputIdx;
if (subscriptIndicesToDimValue[mappedIndx] != dimValue)
{
if(subscriptIndicesToDimValue[mappedIndx] == 1){
//TODO: uncomment later on
// subscriptIndicesToDimValue[mappedIndx] == dimValue;
} else
{
if (dimValue != 1)
{
CV_Error(Error::StsError, cv::format("Einsum operands can not be broadcasted."
"Check input shapes/equation passed."
"Input shape of operand [%d]", inputIdx) +
cv::format(" is incompatible in the dimention [%zu].", static_cast<size_t>(dim_count)));
}
if (subscriptIndicesToDimValue[mappedIndx] != dimValue) {
if (dimValue != 1) {
CV_Error(Error::StsError, cv::format("Einsum operands can not be broadcasted."
"Check input shapes/equation passed."
"Input shape of operand [%d]", inputIdx) +
cv::format(" is incompatible in the dimention [%zu].", static_cast<size_t>(dim_count)));
}
}
}

@ -103,7 +103,6 @@
"test_dynamicquantizelinear_min_adjusted",
"test_dynamicquantizelinear_min_adjusted_expanded",
"test_edge_pad",
"test_einsum_batch_diagonal",
"test_einsum_inner_prod",
"test_equal",
"test_equal_bcast",

@ -1456,6 +1456,11 @@ TEST_P(Test_ONNX_layers, Einsum_2D)
testONNXModels("einsum_2d", npy, 0, 0, false, false, 2);
}
TEST_P(Test_ONNX_layers, Einsum_2D_Ellipses)
{
testONNXModels("einsum_2d_ellipses", npy, 0, 0, false, false, 2);
}
TEST_P(Test_ONNX_layers, Einsum_3D)
{
testONNXModels("einsum_3d", npy, 0, 0, false, false, 2);
@ -1481,7 +1486,7 @@ TEST_P(Test_ONNX_layers, DISABLED_Einsum_HadamardProduct)
testONNXModels("einsum_hadamard", npy, 0, 0, false, false, 2);
}
TEST_P(Test_ONNX_layers, DISABLED_Einsum_Batch_Diagonal)
TEST_P(Test_ONNX_layers, Einsum_Batch_Diagonal)
{
testONNXModels("einsum_batch_diagonal", npy, 0, 0, false, false, 1);
}

Loading…
Cancel
Save