refactored OpticalFlowDual_TVL1:

* added DenseOpticalFlow interface
* moved OpticalFlowDual_TVL1 to src folder
pull/485/head
Vladislav Vinogradov 12 years ago
parent 2181a41a07
commit a3a09cf4d1
  1. 6
      modules/gpu/perf/perf_video.cpp
  2. 4
      modules/gpu/test/test_optflow.cpp
  3. 18
      modules/video/doc/motion_analysis_and_object_tracking.rst
  4. 101
      modules/video/include/opencv2/video/tracking.hpp
  5. 7
      modules/video/perf/perf_tvl1optflow.cpp
  6. 274
      modules/video/src/tvl1flow.cpp
  7. 4
      modules/video/test/test_tvl1optflow.cpp
  8. 4
      samples/cpp/tvl1_optical_flow.cpp

@ -431,13 +431,13 @@ PERF_TEST_P(ImagePair, Video_OpticalFlowDual_TVL1,
{ {
cv::Mat flow; cv::Mat flow;
cv::OpticalFlowDual_TVL1 alg; cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
alg(frame0, frame1, flow); alg->calc(frame0, frame1, flow);
TEST_CYCLE() TEST_CYCLE()
{ {
alg(frame0, frame1, flow); alg->calc(frame0, frame1, flow);
} }
CPU_SANITY_CHECK(flow); CPU_SANITY_CHECK(flow);

@ -431,9 +431,9 @@ GPU_TEST_P(OpticalFlowDual_TVL1, Accuracy)
cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi); cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi);
d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy); d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy);
cv::OpticalFlowDual_TVL1 alg; cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
cv::Mat flow; cv::Mat flow;
alg(frame0, frame1, flow); alg->calc(frame0, frame1, flow);
cv::Mat gold[2]; cv::Mat gold[2];
cv::split(flow, gold); cv::split(flow, gold);

@ -643,11 +643,11 @@ See [Tao2012]_. And site of project - http://graphics.berkeley.edu/papers/Tao-SA
OpticalFlowDual_TVL1 createOptFlow_DualTVL1
-------------------- ----------------------
"Dual TV L1" Optical Flow Algorithm. "Dual TV L1" Optical Flow Algorithm.
.. ocv:class:: OpticalFlowDual_TVL12 .. ocv:function:: Ptr<DenseOpticalFlow> createOptFlow_DualTVL1()
The class implements the "Dual TV L1" optical flow algorithm described in [Zach2007]_ and [Javier2012]_ . The class implements the "Dual TV L1" optical flow algorithm described in [Zach2007]_ and [Javier2012]_ .
@ -685,11 +685,11 @@ Here are important members of the class that control the algorithm, which you ca
OpticalFlowDual_TVL1::operator() DenseOpticalFlow::calc
-------------------------------- --------------------------
Calculates an optical flow. Calculates an optical flow.
.. ocv:function:: void OpticalFlowDual_TVL1::operator ()(InputArray I0, InputArray I1, InputOutputArray flow) .. ocv:function:: void DenseOpticalFlow::calc(InputArray I0, InputArray I1, InputOutputArray flow)
:param prev: first 8-bit single-channel input image. :param prev: first 8-bit single-channel input image.
@ -699,11 +699,11 @@ Calculates an optical flow.
OpticalFlowDual_TVL1::collectGarbage DenseOpticalFlow::collectGarbage
------------------------------------ --------------------------------
Releases all inner buffers. Releases all inner buffers.
.. ocv:function:: void OpticalFlowDual_TVL1::collectGarbage() .. ocv:function:: void DenseOpticalFlow::collectGarbage()

@ -352,104 +352,19 @@ CV_EXPORTS_W void calcOpticalFlowSF(Mat& from,
double upscale_sigma_color, double upscale_sigma_color,
double speed_up_thr); double speed_up_thr);
class CV_EXPORTS DenseOpticalFlow : public Algorithm
{
public:
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow) = 0;
virtual void collectGarbage() = 0;
};
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method // Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
// //
// see reference: // see reference:
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow". // [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation". // [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
class CV_EXPORTS OpticalFlowDual_TVL1 CV_EXPORTS Ptr<DenseOpticalFlow> createOptFlow_DualTVL1();
{
public:
OpticalFlowDual_TVL1();
void operator ()(InputArray I0, InputArray I1, InputOutputArray flow);
void collectGarbage();
/**
* Time step of the numerical scheme.
*/
double tau;
/**
* Weight parameter for the data term, attachment parameter.
* This is the most relevant parameter, which determines the smoothness of the output.
* The smaller this parameter is, the smoother the solutions we obtain.
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
*/
double lambda;
/**
* Weight parameter for (u - v)^2, tightness parameter.
* It serves as a link between the attachment and the regularization terms.
* In theory, it should have a small value in order to maintain both parts in correspondence.
* The method is stable for a large range of values of this parameter.
*/
double theta;
/**
* Number of scales used to create the pyramid of images.
*/
int nscales;
/**
* Number of warpings per scale.
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
* This is a parameter that assures the stability of the method.
* It also affects the running time, so it is a compromise between speed and accuracy.
*/
int warps;
/**
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
* A small value will yield more accurate solutions at the expense of a slower convergence.
*/
double epsilon;
/**
* Stopping criterion iterations number used in the numerical scheme.
*/
int iterations;
bool useInitialFlow;
private:
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2);
std::vector<Mat_<float> > I0s;
std::vector<Mat_<float> > I1s;
std::vector<Mat_<float> > u1s;
std::vector<Mat_<float> > u2s;
Mat_<float> I1x_buf;
Mat_<float> I1y_buf;
Mat_<float> flowMap1_buf;
Mat_<float> flowMap2_buf;
Mat_<float> I1w_buf;
Mat_<float> I1wx_buf;
Mat_<float> I1wy_buf;
Mat_<float> grad_buf;
Mat_<float> rho_c_buf;
Mat_<float> v1_buf;
Mat_<float> v2_buf;
Mat_<float> p11_buf;
Mat_<float> p12_buf;
Mat_<float> p21_buf;
Mat_<float> p22_buf;
Mat_<float> div_p1_buf;
Mat_<float> div_p2_buf;
Mat_<float> u1x_buf;
Mat_<float> u1y_buf;
Mat_<float> u2x_buf;
Mat_<float> u2y_buf;
};
} }

@ -22,12 +22,9 @@ PERF_TEST_P(ImagePair, OpticalFlowDual_TVL1, testing::Values(impair("cv/optflow/
Mat flow; Mat flow;
OpticalFlowDual_TVL1 tvl1; Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1();
TEST_CYCLE() TEST_CYCLE_N(10) tvl1->calc(frame1, frame2, flow);
{
tvl1(frame1, frame2, flow);
}
SANITY_CHECK(flow, 0.5); SANITY_CHECK(flow, 0.5);
} }

@ -77,7 +77,67 @@
using namespace std; using namespace std;
using namespace cv; using namespace cv;
cv::OpticalFlowDual_TVL1::OpticalFlowDual_TVL1() namespace {
class OpticalFlowDual_TVL1 : public DenseOpticalFlow
{
public:
OpticalFlowDual_TVL1();
void calc(InputArray I0, InputArray I1, InputOutputArray flow);
void collectGarbage();
AlgorithmInfo* info() const;
protected:
double tau;
double lambda;
double theta;
int nscales;
int warps;
double epsilon;
int iterations;
bool useInitialFlow;
private:
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2);
std::vector<Mat_<float> > I0s;
std::vector<Mat_<float> > I1s;
std::vector<Mat_<float> > u1s;
std::vector<Mat_<float> > u2s;
Mat_<float> I1x_buf;
Mat_<float> I1y_buf;
Mat_<float> flowMap1_buf;
Mat_<float> flowMap2_buf;
Mat_<float> I1w_buf;
Mat_<float> I1wx_buf;
Mat_<float> I1wy_buf;
Mat_<float> grad_buf;
Mat_<float> rho_c_buf;
Mat_<float> v1_buf;
Mat_<float> v2_buf;
Mat_<float> p11_buf;
Mat_<float> p12_buf;
Mat_<float> p21_buf;
Mat_<float> p22_buf;
Mat_<float> div_p1_buf;
Mat_<float> div_p2_buf;
Mat_<float> u1x_buf;
Mat_<float> u1y_buf;
Mat_<float> u2x_buf;
Mat_<float> u2y_buf;
};
OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
{ {
tau = 0.25; tau = 0.25;
lambda = 0.15; lambda = 0.15;
@ -89,7 +149,7 @@ cv::OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
useInitialFlow = false; useInitialFlow = false;
} }
void cv::OpticalFlowDual_TVL1::operator ()(InputArray _I0, InputArray _I1, InputOutputArray _flow) void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow)
{ {
Mat I0 = _I0.getMat(); Mat I0 = _I0.getMat();
Mat I1 = _I1.getMat(); Mat I1 = _I1.getMat();
@ -195,23 +255,21 @@ void cv::OpticalFlowDual_TVL1::operator ()(InputArray _I0, InputArray _I1, Input
merge(uxy, 2, _flow); merge(uxy, 2, _flow);
} }
namespace ////////////////////////////////////////////////////////////
{ // buildFlowMap
////////////////////////////////////////////////////////////
// buildFlowMap
struct BuildFlowMapBody : ParallelLoopBody struct BuildFlowMapBody : ParallelLoopBody
{ {
void operator() (const Range& range) const; void operator() (const Range& range) const;
Mat_<float> u1; Mat_<float> u1;
Mat_<float> u2; Mat_<float> u2;
mutable Mat_<float> map1; mutable Mat_<float> map1;
mutable Mat_<float> map2; mutable Mat_<float> map2;
}; };
void BuildFlowMapBody::operator() (const Range& range) const void BuildFlowMapBody::operator() (const Range& range) const
{ {
for (int y = range.start; y < range.end; ++y) for (int y = range.start; y < range.end; ++y)
{ {
const float* u1Row = u1[y]; const float* u1Row = u1[y];
@ -226,10 +284,10 @@ namespace
map2Row[x] = y + u2Row[x]; map2Row[x] = y + u2Row[x];
} }
} }
} }
void buildFlowMap(const Mat_<float>& u1, const Mat_<float>& u2, Mat_<float>& map1, Mat_<float>& map2) void buildFlowMap(const Mat_<float>& u1, const Mat_<float>& u2, Mat_<float>& map1, Mat_<float>& map2)
{ {
CV_DbgAssert( u2.size() == u1.size() ); CV_DbgAssert( u2.size() == u1.size() );
CV_DbgAssert( map1.size() == u1.size() ); CV_DbgAssert( map1.size() == u1.size() );
CV_DbgAssert( map2.size() == u1.size() ); CV_DbgAssert( map2.size() == u1.size() );
@ -242,22 +300,22 @@ namespace
body.map2 = map2; body.map2 = map2;
parallel_for_(Range(0, u1.rows), body); parallel_for_(Range(0, u1.rows), body);
} }
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// centeredGradient // centeredGradient
struct CenteredGradientBody : ParallelLoopBody struct CenteredGradientBody : ParallelLoopBody
{ {
void operator() (const Range& range) const; void operator() (const Range& range) const;
Mat_<float> src; Mat_<float> src;
mutable Mat_<float> dx; mutable Mat_<float> dx;
mutable Mat_<float> dy; mutable Mat_<float> dy;
}; };
void CenteredGradientBody::operator() (const Range& range) const void CenteredGradientBody::operator() (const Range& range) const
{ {
const int last_col = src.cols - 1; const int last_col = src.cols - 1;
for (int y = range.start; y < range.end; ++y) for (int y = range.start; y < range.end; ++y)
@ -275,10 +333,10 @@ namespace
dyRow[x] = 0.5f * (srcNextRow[x] - srcPrevRow[x]); dyRow[x] = 0.5f * (srcNextRow[x] - srcPrevRow[x]);
} }
} }
} }
void centeredGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy) void centeredGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy)
{ {
CV_DbgAssert( src.rows > 2 && src.cols > 2 ); CV_DbgAssert( src.rows > 2 && src.cols > 2 );
CV_DbgAssert( dx.size() == src.size() ); CV_DbgAssert( dx.size() == src.size() );
CV_DbgAssert( dy.size() == src.size() ); CV_DbgAssert( dy.size() == src.size() );
@ -329,22 +387,22 @@ namespace
dx(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row, last_col - 1)); dx(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row, last_col - 1));
dy(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row - 1, last_col)); dy(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row - 1, last_col));
} }
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// forwardGradient // forwardGradient
struct ForwardGradientBody : ParallelLoopBody struct ForwardGradientBody : ParallelLoopBody
{ {
void operator() (const Range& range) const; void operator() (const Range& range) const;
Mat_<float> src; Mat_<float> src;
mutable Mat_<float> dx; mutable Mat_<float> dx;
mutable Mat_<float> dy; mutable Mat_<float> dy;
}; };
void ForwardGradientBody::operator() (const Range& range) const void ForwardGradientBody::operator() (const Range& range) const
{ {
const int last_col = src.cols - 1; const int last_col = src.cols - 1;
for (int y = range.start; y < range.end; ++y) for (int y = range.start; y < range.end; ++y)
@ -361,10 +419,10 @@ namespace
dyRow[x] = srcNextRow[x] - srcCurRow[x]; dyRow[x] = srcNextRow[x] - srcCurRow[x];
} }
} }
} }
void forwardGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy) void forwardGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy)
{ {
CV_DbgAssert( src.rows > 2 && src.cols > 2 ); CV_DbgAssert( src.rows > 2 && src.cols > 2 );
CV_DbgAssert( dx.size() == src.size() ); CV_DbgAssert( dx.size() == src.size() );
CV_DbgAssert( dy.size() == src.size() ); CV_DbgAssert( dy.size() == src.size() );
@ -399,22 +457,22 @@ namespace
dx(last_row, last_col) = 0.0f; dx(last_row, last_col) = 0.0f;
dy(last_row, last_col) = 0.0f; dy(last_row, last_col) = 0.0f;
} }
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// divergence // divergence
struct DivergenceBody : ParallelLoopBody struct DivergenceBody : ParallelLoopBody
{ {
void operator() (const Range& range) const; void operator() (const Range& range) const;
Mat_<float> v1; Mat_<float> v1;
Mat_<float> v2; Mat_<float> v2;
mutable Mat_<float> div; mutable Mat_<float> div;
}; };
void DivergenceBody::operator() (const Range& range) const void DivergenceBody::operator() (const Range& range) const
{ {
for (int y = range.start; y < range.end; ++y) for (int y = range.start; y < range.end; ++y)
{ {
const float* v1Row = v1[y]; const float* v1Row = v1[y];
@ -431,10 +489,10 @@ namespace
divRow[x] = v1x + v2y; divRow[x] = v1x + v2y;
} }
} }
} }
void divergence(const Mat_<float>& v1, const Mat_<float>& v2, Mat_<float>& div) void divergence(const Mat_<float>& v1, const Mat_<float>& v2, Mat_<float>& div)
{ {
CV_DbgAssert( v1.rows > 2 && v1.cols > 2 ); CV_DbgAssert( v1.rows > 2 && v1.cols > 2 );
CV_DbgAssert( v2.size() == v1.size() ); CV_DbgAssert( v2.size() == v1.size() );
CV_DbgAssert( div.size() == v1.size() ); CV_DbgAssert( div.size() == v1.size() );
@ -458,13 +516,13 @@ namespace
div(y, 0) = v1(y, 0) + v2(y, 0) - v2(y - 1, 0); div(y, 0) = v1(y, 0) + v2(y, 0) - v2(y - 1, 0);
div(0, 0) = v1(0, 0) + v2(0, 0); div(0, 0) = v1(0, 0) + v2(0, 0);
} }
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// calcGradRho // calcGradRho
struct CalcGradRhoBody : ParallelLoopBody struct CalcGradRhoBody : ParallelLoopBody
{ {
void operator() (const Range& range) const; void operator() (const Range& range) const;
Mat_<float> I0; Mat_<float> I0;
@ -475,10 +533,10 @@ namespace
Mat_<float> u2; Mat_<float> u2;
mutable Mat_<float> grad; mutable Mat_<float> grad;
mutable Mat_<float> rho_c; mutable Mat_<float> rho_c;
}; };
void CalcGradRhoBody::operator() (const Range& range) const void CalcGradRhoBody::operator() (const Range& range) const
{ {
for (int y = range.start; y < range.end; ++y) for (int y = range.start; y < range.end; ++y)
{ {
const float* I0Row = I0[y]; const float* I0Row = I0[y];
@ -503,11 +561,11 @@ namespace
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]); rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]);
} }
} }
} }
void calcGradRho(const Mat_<float>& I0, const Mat_<float>& I1w, const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, void calcGradRho(const Mat_<float>& I0, const Mat_<float>& I1w, const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2,
Mat_<float>& grad, Mat_<float>& rho_c) Mat_<float>& grad, Mat_<float>& rho_c)
{ {
CV_DbgAssert( I1w.size() == I0.size() ); CV_DbgAssert( I1w.size() == I0.size() );
CV_DbgAssert( I1wx.size() == I0.size() ); CV_DbgAssert( I1wx.size() == I0.size() );
CV_DbgAssert( I1wy.size() == I0.size() ); CV_DbgAssert( I1wy.size() == I0.size() );
@ -528,13 +586,13 @@ namespace
body.rho_c = rho_c; body.rho_c = rho_c;
parallel_for_(Range(0, I0.rows), body); parallel_for_(Range(0, I0.rows), body);
} }
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// estimateV // estimateV
struct EstimateVBody : ParallelLoopBody struct EstimateVBody : ParallelLoopBody
{ {
void operator() (const Range& range) const; void operator() (const Range& range) const;
Mat_<float> I1wx; Mat_<float> I1wx;
@ -546,10 +604,10 @@ namespace
mutable Mat_<float> v1; mutable Mat_<float> v1;
mutable Mat_<float> v2; mutable Mat_<float> v2;
float l_t; float l_t;
}; };
void EstimateVBody::operator() (const Range& range) const void EstimateVBody::operator() (const Range& range) const
{ {
for (int y = range.start; y < range.end; ++y) for (int y = range.start; y < range.end; ++y)
{ {
const float* I1wxRow = I1wx[y]; const float* I1wxRow = I1wx[y];
@ -590,11 +648,11 @@ namespace
v2Row[x] = u2Row[x] + d2; v2Row[x] = u2Row[x] + d2;
} }
} }
} }
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& grad, const Mat_<float>& rho_c, void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& grad, const Mat_<float>& rho_c,
Mat_<float>& v1, Mat_<float>& v2, float l_t) Mat_<float>& v1, Mat_<float>& v2, float l_t)
{ {
CV_DbgAssert( I1wy.size() == I1wx.size() ); CV_DbgAssert( I1wy.size() == I1wx.size() );
CV_DbgAssert( u1.size() == I1wx.size() ); CV_DbgAssert( u1.size() == I1wx.size() );
CV_DbgAssert( u2.size() == I1wx.size() ); CV_DbgAssert( u2.size() == I1wx.size() );
@ -616,13 +674,13 @@ namespace
body.l_t = l_t; body.l_t = l_t;
parallel_for_(Range(0, I1wx.rows), body); parallel_for_(Range(0, I1wx.rows), body);
} }
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// estimateU // estimateU
float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& div_p1, const Mat_<float>& div_p2, Mat_<float>& u1, Mat_<float>& u2, float theta) float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& div_p1, const Mat_<float>& div_p2, Mat_<float>& u1, Mat_<float>& u2, float theta)
{ {
CV_DbgAssert( v2.size() == v1.size() ); CV_DbgAssert( v2.size() == v1.size() );
CV_DbgAssert( div_p1.size() == v1.size() ); CV_DbgAssert( div_p1.size() == v1.size() );
CV_DbgAssert( div_p2.size() == v1.size() ); CV_DbgAssert( div_p2.size() == v1.size() );
@ -653,13 +711,13 @@ namespace
} }
return error; return error;
} }
//////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////
// estimateDualVariables // estimateDualVariables
struct EstimateDualVariablesBody : ParallelLoopBody struct EstimateDualVariablesBody : ParallelLoopBody
{ {
void operator() (const Range& range) const; void operator() (const Range& range) const;
Mat_<float> u1x; Mat_<float> u1x;
@ -671,10 +729,10 @@ namespace
mutable Mat_<float> p21; mutable Mat_<float> p21;
mutable Mat_<float> p22; mutable Mat_<float> p22;
float taut; float taut;
}; };
void EstimateDualVariablesBody::operator() (const Range& range) const void EstimateDualVariablesBody::operator() (const Range& range) const
{ {
for (int y = range.start; y < range.end; ++y) for (int y = range.start; y < range.end; ++y)
{ {
const float* u1xRow = u1x[y]; const float* u1xRow = u1x[y];
@ -701,11 +759,11 @@ namespace
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2; p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2;
} }
} }
} }
void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const Mat_<float>& u2x, const Mat_<float>& u2y, void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const Mat_<float>& u2x, const Mat_<float>& u2y,
Mat_<float>& p11, Mat_<float>& p12, Mat_<float>& p21, Mat_<float>& p22, float taut) Mat_<float>& p11, Mat_<float>& p12, Mat_<float>& p21, Mat_<float>& p22, float taut)
{ {
CV_DbgAssert( u1y.size() == u1x.size() ); CV_DbgAssert( u1y.size() == u1x.size() );
CV_DbgAssert( u2x.size() == u1x.size() ); CV_DbgAssert( u2x.size() == u1x.size() );
CV_DbgAssert( u2y.size() == u1x.size() ); CV_DbgAssert( u2y.size() == u1x.size() );
@ -727,10 +785,9 @@ namespace
body.taut = taut; body.taut = taut;
parallel_for_(Range(0, u1x.rows), body); parallel_for_(Range(0, u1x.rows), body);
}
} }
void cv::OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2) void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2)
{ {
const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area()); const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area());
@ -818,21 +875,12 @@ void cv::OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<fl
} }
} }
namespace void OpticalFlowDual_TVL1::collectGarbage()
{
template <typename T> void releaseVector(vector<T>& v)
{
vector<T> empty;
empty.swap(v);
}
}
void cv::OpticalFlowDual_TVL1::collectGarbage()
{ {
releaseVector(I0s); I0s.clear();
releaseVector(I1s); I1s.clear();
releaseVector(u1s); u1s.clear();
releaseVector(u2s); u2s.clear();
I1x_buf.release(); I1x_buf.release();
I1y_buf.release(); I1y_buf.release();
@ -863,3 +911,27 @@ void cv::OpticalFlowDual_TVL1::collectGarbage()
u2x_buf.release(); u2x_buf.release();
u2y_buf.release(); u2y_buf.release();
} }
CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1",
obj.info()->addParam(obj, "tau", obj.tau, false, 0, 0,
"Time step of the numerical scheme");
obj.info()->addParam(obj, "lambda", obj.lambda, false, 0, 0,
"Weight parameter for the data term, attachment parameter");
obj.info()->addParam(obj, "theta", obj.theta, false, 0, 0,
"Weight parameter for (u - v)^2, tightness parameter");
obj.info()->addParam(obj, "nscales", obj.nscales, false, 0, 0,
"Number of scales used to create the pyramid of images");
obj.info()->addParam(obj, "warps", obj.warps, false, 0, 0,
"Number of warpings per scale");
obj.info()->addParam(obj, "epsilon", obj.epsilon, false, 0, 0,
"Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time");
obj.info()->addParam(obj, "iterations", obj.iterations, false, 0, 0,
"Stopping criterion iterations number used in the numerical scheme");
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow));
} // namespace
Ptr<DenseOpticalFlow> cv::createOptFlow_DualTVL1()
{
return new OpticalFlowDual_TVL1;
}

@ -152,9 +152,9 @@ TEST(Video_calcOpticalFlowDual_TVL1, Regression)
ASSERT_FALSE(frame2.empty()); ASSERT_FALSE(frame2.empty());
Mat_<Point2f> flow; Mat_<Point2f> flow;
OpticalFlowDual_TVL1 tvl1; Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1();
tvl1(frame1, frame2, flow); tvl1->calc(frame1, frame2, flow);
#ifdef DUMP #ifdef DUMP
writeOpticalFlowToFile(flow, gold_flow_path); writeOpticalFlowToFile(flow, gold_flow_path);

@ -173,10 +173,10 @@ int main(int argc, const char* argv[])
} }
Mat_<Point2f> flow; Mat_<Point2f> flow;
OpticalFlowDual_TVL1 tvl1; Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1();
const double start = (double)getTickCount(); const double start = (double)getTickCount();
tvl1(frame0, frame1, flow); tvl1->calc(frame0, frame1, flow);
const double timeSec = (getTickCount() - start) / getTickFrequency(); const double timeSec = (getTickCount() - start) / getTickFrequency();
cout << "calcOpticalFlowDual_TVL1 : " << timeSec << " sec" << endl; cout << "calcOpticalFlowDual_TVL1 : " << timeSec << " sec" << endl;

Loading…
Cancel
Save