Utilize CV_UNUSED macro

pull/12460/head
Hamdi Sahloul 7 years ago
parent f3fae0dae0
commit a39e0daacf
  1. 2
      apps/interactive-calibration/frameProcessor.cpp
  2. 6
      modules/calib3d/src/circlesgrid.cpp
  3. 4
      modules/calib3d/src/rho.cpp
  4. 4
      modules/core/include/opencv2/core.hpp
  5. 4
      modules/core/include/opencv2/core/cuda/detail/reduce.hpp
  6. 6
      modules/core/include/opencv2/core/cuda/detail/reduce_key_val.hpp
  7. 20
      modules/core/include/opencv2/core/cuda/emulation.hpp
  8. 12
      modules/core/include/opencv2/core/cuda/filters.hpp
  9. 6
      modules/core/include/opencv2/core/cuda/functional.hpp
  10. 6
      modules/core/include/opencv2/core/cuda/scan.hpp
  11. 2
      modules/core/include/opencv2/core/cv_cpu_dispatch.h
  12. 2
      modules/core/include/opencv2/core/fast_math.hpp
  13. 2
      modules/core/include/opencv2/core/vsx_utils.hpp
  14. 4
      modules/core/perf/perf_mat.cpp
  15. 4
      modules/core/perf/perf_norm.cpp
  16. 2
      modules/core/src/arithm.cpp
  17. 2
      modules/core/src/bufferpool.impl.hpp
  18. 2
      modules/core/src/cuda/gpu_mat.cu
  19. 78
      modules/core/src/cuda_gpu_mat.cpp
  20. 12
      modules/core/src/cuda_host_mem.cpp
  21. 38
      modules/core/src/cuda_info.cpp
  22. 38
      modules/core/src/cuda_stream.cpp
  23. 24
      modules/core/src/directx.cpp
  24. 2
      modules/core/src/glob.cpp
  25. 2
      modules/core/src/matrix.cpp
  26. 4
      modules/core/src/ocl.cpp
  27. 164
      modules/core/src/opengl.cpp
  28. 4
      modules/core/src/parallel.cpp
  29. 4
      modules/core/src/system.cpp
  30. 2
      modules/core/src/trace.cpp
  31. 2
      modules/core/src/umatrix.cpp
  32. 6
      modules/core/src/va_intel.cpp
  33. 2
      modules/core/test/test_dxt.cpp
  34. 22
      modules/cudaarithm/src/arithm.cpp
  35. 2
      modules/cudaarithm/src/cuda/bitwise_scalar.cu
  36. 4
      modules/cudaarithm/src/cuda/mul_spectrums.cu
  37. 6
      modules/cudacodec/src/video_writer.cpp
  38. 10
      modules/cudafeatures2d/src/cuda/bf_knnmatch.cu
  39. 14
      modules/cudaimgproc/src/color.cpp
  40. 10
      modules/cudaimgproc/src/generalized_hough.cpp
  41. 2
      modules/cudaimgproc/src/hough_circles.cpp
  42. 2
      modules/cudaimgproc/src/hough_lines.cpp
  43. 2
      modules/cudaimgproc/src/hough_segments.cpp
  44. 20
      modules/cudalegacy/include/opencv2/cudalegacy/NCV.hpp
  45. 8
      modules/cudalegacy/src/NCV.cpp
  46. 2
      modules/cudalegacy/src/calib3d.cpp
  47. 2
      modules/cudalegacy/src/cuda/NCV.cu
  48. 16
      modules/cudalegacy/src/cuda/NCVHaarObjectDetection.cu
  49. 2
      modules/cudalegacy/src/cuda/NCVRuntimeTemplates.hpp
  50. 2
      modules/cudalegacy/src/cuda/ccomponetns.cu
  51. 2
      modules/cudalegacy/src/gmg.cpp
  52. 2
      modules/cudalegacy/test/TestHaarCascadeApplication.cpp
  53. 4
      modules/cudalegacy/test/main_nvidia.cpp
  54. 4
      modules/cudaobjdetect/src/cuda/hog.cu
  55. 20
      modules/cudaoptflow/src/cuda/pyrlk.cu
  56. 6
      modules/cudawarping/src/cuda/remap.cu
  57. 6
      modules/cudawarping/src/cuda/warp.cu
  58. 2
      modules/cudawarping/src/warp.cpp
  59. 4
      modules/cudev/include/opencv2/cudev/block/detail/reduce.hpp
  60. 4
      modules/cudev/include/opencv2/cudev/ptr2d/texture.hpp
  61. 20
      modules/cudev/include/opencv2/cudev/util/atomic.hpp
  62. 4
      modules/cudev/include/opencv2/cudev/warp/detail/reduce.hpp
  63. 4
      modules/cudev/include/opencv2/cudev/warp/scan.hpp
  64. 2
      modules/dnn/include/opencv2/dnn/dnn.hpp
  65. 2
      modules/dnn/misc/python/pyopencv_dnn.hpp
  66. 2
      modules/dnn/src/dnn.cpp
  67. 2
      modules/dnn/src/init.cpp
  68. 2
      modules/dnn/src/layers/batch_norm_layer.cpp
  69. 2
      modules/dnn/src/layers/eltwise_layer.cpp
  70. 2
      modules/dnn/src/layers/fully_connected_layer.cpp
  71. 2
      modules/dnn/src/layers/lrn_layer.cpp
  72. 2
      modules/dnn/src/layers/mvn_layer.cpp
  73. 2
      modules/dnn/src/layers/pooling_layer.cpp
  74. 2
      modules/dnn/src/layers/prior_box_layer.cpp
  75. 2
      modules/dnn/src/layers/region_layer.cpp
  76. 2
      modules/dnn/src/layers/reorg_layer.cpp
  77. 2
      modules/dnn/src/layers/scale_layer.cpp
  78. 2
      modules/dnn/src/layers/softmax_layer.cpp
  79. 2
      modules/features2d/src/blobdetector.cpp
  80. 2
      modules/features2d/src/orb.cpp
  81. 2
      modules/flann/include/opencv2/flann/lsh_table.h
  82. 2
      modules/flann/misc/python/pyopencv_flann.hpp
  83. 6
      modules/highgui/src/window.cpp
  84. 2
      modules/highgui/src/window_w32.cpp
  85. 6
      modules/imgproc/src/connectedcomponents.cpp
  86. 2
      modules/imgproc/src/resize.cpp
  87. 2
      modules/imgproc/src/smooth.cpp
  88. 2
      modules/java/generator/src/cpp/Mat.cpp
  89. 4
      modules/ml/misc/python/pyopencv_ml.hpp
  90. 2
      modules/ml/src/knearest.cpp
  91. 56
      modules/python/src2/cv2.cpp
  92. 10
      modules/stitching/src/blenders.cpp
  93. 12
      modules/stitching/src/matchers.cpp
  94. 76
      modules/stitching/src/warpers_cuda.cpp
  95. 4
      modules/superres/src/frame_source.cpp
  96. 2
      modules/ts/src/ts_gtest.cpp
  97. 30
      modules/videoio/include/opencv2/videoio/cap_ios.h
  98. 2
      modules/videoio/src/cap_ffmpeg_impl.hpp

@ -103,7 +103,7 @@ bool CalibProcessor::detectAndParseChAruco(const cv::Mat &frame)
return true;
}
#else
(void)frame;
CV_UNUSED(frame);
#endif
return false;
}

@ -394,9 +394,9 @@ void CirclesGridClusterFinder::rectifyPatternPoints(const std::vector<cv::Point2
void CirclesGridClusterFinder::parsePatternPoints(const std::vector<cv::Point2f> &patternPoints, const std::vector<cv::Point2f> &rectifiedPatternPoints, std::vector<cv::Point2f> &centers)
{
#ifndef HAVE_OPENCV_FLANN
(void)patternPoints;
(void)rectifiedPatternPoints;
(void)centers;
CV_UNUSED(patternPoints);
CV_UNUSED(rectifiedPatternPoints);
CV_UNUSED(centers);
CV_Error(Error::StsNotImplemented, "The desired functionality requires flann module, which was disabled.");
#else
flann::LinearIndexParams flannIndexParams;

@ -127,8 +127,8 @@ struct RHO_HEST{
*/
virtual inline int ensureCapacity(unsigned N, double beta){
(void)N;
(void)beta;
CV_UNUSED(N);
CV_UNUSED(beta);
return 1;
}

@ -3081,7 +3081,7 @@ public:
/** @brief Stores algorithm parameters in a file storage
*/
virtual void write(FileStorage& fs) const { (void)fs; }
virtual void write(FileStorage& fs) const { CV_UNUSED(fs); }
/** @brief simplified API for language bindings
* @overload
@ -3090,7 +3090,7 @@ public:
/** @brief Reads algorithm parameters from a file storage
*/
CV_WRAP virtual void read(const FileNode& fn) { (void)fn; }
CV_WRAP virtual void read(const FileNode& fn) { CV_UNUSED(fn); }
/** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
*/

@ -276,8 +276,8 @@ namespace cv { namespace cuda { namespace device
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300
(void) smem;
(void) tid;
CV_UNUSED(smem);
CV_UNUSED(tid);
Unroll<N / 2, Pointer, Reference, Op>::loopShfl(val, op, N);
#else

@ -402,9 +402,9 @@ namespace cv { namespace cuda { namespace device
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
#if 0 // __CUDA_ARCH__ >= 300
(void) skeys;
(void) svals;
(void) tid;
CV_UNUSED(skeys);
CV_UNUSED(svals);
CV_UNUSED(tid);
Unroll<N / 2, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, N);
#else

@ -177,8 +177,8 @@ namespace cv { namespace cuda { namespace device
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}
@ -199,8 +199,8 @@ namespace cv { namespace cuda { namespace device
} while (assumed != old);
return __int_as_float(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0f;
#endif
}
@ -216,8 +216,8 @@ namespace cv { namespace cuda { namespace device
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}
@ -238,8 +238,8 @@ namespace cv { namespace cuda { namespace device
} while (assumed != old);
return __int_as_float(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0f;
#endif
}
@ -255,8 +255,8 @@ namespace cv { namespace cuda { namespace device
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}

@ -64,8 +64,8 @@ namespace cv { namespace cuda { namespace device
explicit __host__ __device__ __forceinline__ PointFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
(void)fx;
(void)fy;
CV_UNUSED(fx);
CV_UNUSED(fy);
}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
@ -84,8 +84,8 @@ namespace cv { namespace cuda { namespace device
explicit __host__ __device__ __forceinline__ LinearFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
(void)fx;
(void)fy;
CV_UNUSED(fx);
CV_UNUSED(fy);
}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
@ -125,8 +125,8 @@ namespace cv { namespace cuda { namespace device
explicit __host__ __device__ __forceinline__ CubicFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
(void)fx;
(void)fy;
CV_UNUSED(fx);
CV_UNUSED(fy);
}
static __device__ __forceinline__ float bicubicCoeff(float x_)

@ -597,7 +597,7 @@ namespace cv { namespace cuda { namespace device
template <typename T> struct thresh_trunc_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_trunc_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}
explicit __host__ __device__ __forceinline__ thresh_trunc_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {CV_UNUSED(maxVal_);}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
@ -613,7 +613,7 @@ namespace cv { namespace cuda { namespace device
template <typename T> struct thresh_to_zero_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_to_zero_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}
explicit __host__ __device__ __forceinline__ thresh_to_zero_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {CV_UNUSED(maxVal_);}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
@ -629,7 +629,7 @@ namespace cv { namespace cuda { namespace device
template <typename T> struct thresh_to_zero_inv_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_to_zero_inv_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}
explicit __host__ __device__ __forceinline__ thresh_to_zero_inv_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {CV_UNUSED(maxVal_);}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{

@ -61,7 +61,7 @@ namespace cv { namespace cuda { namespace device
template <ScanKind Kind, typename T, typename F> struct WarpScan
{
__device__ __forceinline__ WarpScan() {}
__device__ __forceinline__ WarpScan(const WarpScan& other) { (void)other; }
__device__ __forceinline__ WarpScan(const WarpScan& other) { CV_UNUSED(other); }
__device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx)
{
@ -95,7 +95,7 @@ namespace cv { namespace cuda { namespace device
template <ScanKind Kind , typename T, typename F> struct WarpScanNoComp
{
__device__ __forceinline__ WarpScanNoComp() {}
__device__ __forceinline__ WarpScanNoComp(const WarpScanNoComp& other) { (void)other; }
__device__ __forceinline__ WarpScanNoComp(const WarpScanNoComp& other) { CV_UNUSED(other); }
__device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx)
{
@ -135,7 +135,7 @@ namespace cv { namespace cuda { namespace device
template <ScanKind Kind , typename T, typename Sc, typename F> struct BlockScan
{
__device__ __forceinline__ BlockScan() {}
__device__ __forceinline__ BlockScan(const BlockScan& other) { (void)other; }
__device__ __forceinline__ BlockScan(const BlockScan& other) { CV_UNUSED(other); }
__device__ __forceinline__ T operator()(volatile T *ptr)
{

@ -124,7 +124,7 @@ struct VZeroUpperGuard {
#endif
inline ~VZeroUpperGuard() { _mm256_zeroupper(); }
};
#define __CV_AVX_GUARD VZeroUpperGuard __vzeroupper_guard; (void)__vzeroupper_guard;
#define __CV_AVX_GUARD VZeroUpperGuard __vzeroupper_guard; CV_UNUSED(__vzeroupper_guard);
#endif
#ifdef __CV_AVX_GUARD

@ -79,7 +79,7 @@
#define ARM_ROUND(_value, _asm_string) \
int res; \
float temp; \
(void)temp; \
CV_UNUSED(temp); \
__asm__(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \
return res
// 2. version for double

@ -466,7 +466,7 @@ VSX_IMPL_CONV_EVEN_2_4(vec_uint4, vec_double2, vec_ctu, vec_ctuo)
VSX_FINLINE(rt) fnm(const rg& a, int only_truncate) \
{ \
assert(only_truncate == 0); \
(void)only_truncate; \
CV_UNUSED(only_truncate); \
return fn2(a); \
}
VSX_IMPL_CONV_2VARIANT(vec_int4, vec_float4, vec_cts, vec_cts)

@ -62,7 +62,7 @@ PERF_TEST_P(Size_MatType, Mat_Clone,
TEST_CYCLE()
{
Mat tmp = source.clone();
(void)tmp;
CV_UNUSED(tmp);
}
destination = source.clone();
@ -90,7 +90,7 @@ PERF_TEST_P(Size_MatType, Mat_Clone_Roi,
TEST_CYCLE()
{
Mat tmp = roi.clone();
(void)tmp;
CV_UNUSED(tmp);
}
destination = roi.clone();

@ -126,7 +126,7 @@ PERF_TEST_P(PerfHamming, norm,
TEST_CYCLE() n = cv::norm(src, normType);
(void)n;
CV_UNUSED(n);
SANITY_CHECK_NOTHING();
}
@ -150,7 +150,7 @@ PERF_TEST_P(PerfHamming, norm2,
TEST_CYCLE() n = cv::norm(src1, src2, normType);
(void)n;
CV_UNUSED(n);
SANITY_CHECK_NOTHING();
}

@ -2555,7 +2555,7 @@ void absdiff64f( const double* src1, size_t step1,
#define CALL_IPP_UN(fun) \
CV_IPP_CHECK() \
{ \
fixSteps(width, height, sizeof(dst[0]), step1, step2, step); (void)src2; \
fixSteps(width, height, sizeof(dst[0]), step1, step2, step); CV_UNUSED(src2); \
if (0 <= CV_INSTRUMENT_FUN_IPP(fun, src1, (int)step1, dst, (int)step, ippiSize(width, height))) \
{ \
CV_IMPL_ADD(CV_IMPL_IPP); \

@ -19,7 +19,7 @@ public:
virtual size_t getReservedSize() const CV_OVERRIDE { return (size_t)-1; }
virtual size_t getMaxReservedSize() const CV_OVERRIDE { return (size_t)-1; }
virtual void setMaxReservedSize(size_t size) CV_OVERRIDE { (void)size; }
virtual void setMaxReservedSize(size_t size) CV_OVERRIDE { CV_UNUSED(size); }
virtual void freeAllReservedBuffers() CV_OVERRIDE { }
};

@ -76,7 +76,7 @@ namespace
}
__device__ __host__ void deallocate(uchar* ptr, size_t numBytes) CV_OVERRIDE
{
(void)numBytes;
CV_UNUSED(numBytes);
#ifndef __CUDA_ARCH__
CV_CUDEV_SAFE_CALL(cudaFree(ptr));
#endif

@ -345,8 +345,8 @@ void cv::cuda::ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr)
GpuMat cv::cuda::getInputMat(InputArray _src, Stream& stream)
{
#ifndef HAVE_CUDA
(void) _src;
(void) stream;
CV_UNUSED(_src);
CV_UNUSED(stream);
throw_no_cuda();
#else
GpuMat src;
@ -367,11 +367,11 @@ GpuMat cv::cuda::getInputMat(InputArray _src, Stream& stream)
GpuMat cv::cuda::getOutputMat(OutputArray _dst, int rows, int cols, int type, Stream& stream)
{
#ifndef HAVE_CUDA
(void) _dst;
(void) rows;
(void) cols;
(void) type;
(void) stream;
CV_UNUSED(_dst);
CV_UNUSED(rows);
CV_UNUSED(cols);
CV_UNUSED(type);
CV_UNUSED(stream);
throw_no_cuda();
#else
GpuMat dst;
@ -392,9 +392,9 @@ GpuMat cv::cuda::getOutputMat(OutputArray _dst, int rows, int cols, int type, St
void cv::cuda::syncOutput(const GpuMat& dst, OutputArray _dst, Stream& stream)
{
#ifndef HAVE_CUDA
(void) dst;
(void) _dst;
(void) stream;
CV_UNUSED(dst);
CV_UNUSED(_dst);
CV_UNUSED(stream);
throw_no_cuda();
#else
if (_dst.kind() != _InputArray::CUDA_GPU_MAT)
@ -416,15 +416,15 @@ GpuMat::Allocator* cv::cuda::GpuMat::defaultAllocator()
void cv::cuda::GpuMat::setDefaultAllocator(Allocator* allocator)
{
(void) allocator;
CV_UNUSED(allocator);
throw_no_cuda();
}
void cv::cuda::GpuMat::create(int _rows, int _cols, int _type)
{
(void) _rows;
(void) _cols;
(void) _type;
CV_UNUSED(_rows);
CV_UNUSED(_cols);
CV_UNUSED(_type);
throw_no_cuda();
}
@ -434,81 +434,81 @@ void cv::cuda::GpuMat::release()
void cv::cuda::GpuMat::upload(InputArray arr)
{
(void) arr;
CV_UNUSED(arr);
throw_no_cuda();
}
void cv::cuda::GpuMat::upload(InputArray arr, Stream& _stream)
{
(void) arr;
(void) _stream;
CV_UNUSED(arr);
CV_UNUSED(_stream);
throw_no_cuda();
}
void cv::cuda::GpuMat::download(OutputArray _dst) const
{
(void) _dst;
CV_UNUSED(_dst);
throw_no_cuda();
}
void cv::cuda::GpuMat::download(OutputArray _dst, Stream& _stream) const
{
(void) _dst;
(void) _stream;
CV_UNUSED(_dst);
CV_UNUSED(_stream);
throw_no_cuda();
}
void cv::cuda::GpuMat::copyTo(OutputArray _dst) const
{
(void) _dst;
CV_UNUSED(_dst);
throw_no_cuda();
}
void cv::cuda::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
{
(void) _dst;
(void) _stream;
CV_UNUSED(_dst);
CV_UNUSED(_stream);
throw_no_cuda();
}
void cv::cuda::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& _stream) const
{
(void) _dst;
(void) _mask;
(void) _stream;
CV_UNUSED(_dst);
CV_UNUSED(_mask);
CV_UNUSED(_stream);
throw_no_cuda();
}
GpuMat& cv::cuda::GpuMat::setTo(Scalar s, Stream& _stream)
{
(void) s;
(void) _stream;
CV_UNUSED(s);
CV_UNUSED(_stream);
throw_no_cuda();
}
GpuMat& cv::cuda::GpuMat::setTo(Scalar s, InputArray _mask, Stream& _stream)
{
(void) s;
(void) _mask;
(void) _stream;
CV_UNUSED(s);
CV_UNUSED(_mask);
CV_UNUSED(_stream);
throw_no_cuda();
}
void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& _stream) const
{
(void) _dst;
(void) rtype;
(void) _stream;
CV_UNUSED(_dst);
CV_UNUSED(rtype);
CV_UNUSED(_stream);
throw_no_cuda();
}
void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& _stream) const
{
(void) _dst;
(void) rtype;
(void) alpha;
(void) beta;
(void) _stream;
CV_UNUSED(_dst);
CV_UNUSED(rtype);
CV_UNUSED(alpha);
CV_UNUSED(beta);
CV_UNUSED(_stream);
throw_no_cuda();
}

@ -136,7 +136,7 @@ private:
MatAllocator* cv::cuda::HostMem::getAllocator(AllocType alloc_type)
{
#ifndef HAVE_CUDA
(void) alloc_type;
CV_UNUSED(alloc_type);
throw_no_cuda();
#else
static std::map<unsigned int, Ptr<MatAllocator> > allocators;
@ -178,9 +178,9 @@ namespace
void cv::cuda::HostMem::create(int rows_, int cols_, int type_)
{
#ifndef HAVE_CUDA
(void) rows_;
(void) cols_;
(void) type_;
CV_UNUSED(rows_);
CV_UNUSED(cols_);
CV_UNUSED(type_);
throw_no_cuda();
#else
if (alloc_type == SHARED)
@ -317,7 +317,7 @@ GpuMat cv::cuda::HostMem::createGpuMatHeader() const
void cv::cuda::registerPageLocked(Mat& m)
{
#ifndef HAVE_CUDA
(void) m;
CV_UNUSED(m);
throw_no_cuda();
#else
CV_Assert( m.isContinuous() );
@ -328,7 +328,7 @@ void cv::cuda::registerPageLocked(Mat& m)
void cv::cuda::unregisterPageLocked(Mat& m)
{
#ifndef HAVE_CUDA
(void) m;
CV_UNUSED(m);
#else
cudaSafeCall( cudaHostUnregister(m.data) );
#endif

@ -67,7 +67,7 @@ int cv::cuda::getCudaEnabledDeviceCount()
void cv::cuda::setDevice(int device)
{
#ifndef HAVE_CUDA
(void) device;
CV_UNUSED(device);
throw_no_cuda();
#else
cudaSafeCall( cudaSetDevice(device) );
@ -98,7 +98,7 @@ void cv::cuda::resetDevice()
bool cv::cuda::deviceSupports(FeatureSet feature_set)
{
#ifndef HAVE_CUDA
(void) feature_set;
CV_UNUSED(feature_set);
throw_no_cuda();
#else
static int versions[] =
@ -227,7 +227,7 @@ namespace
bool cv::cuda::TargetArchs::builtWith(cv::cuda::FeatureSet feature_set)
{
#ifndef HAVE_CUDA
(void) feature_set;
CV_UNUSED(feature_set);
throw_no_cuda();
#else
return cudaArch.builtWith(feature_set);
@ -237,8 +237,8 @@ bool cv::cuda::TargetArchs::builtWith(cv::cuda::FeatureSet feature_set)
bool cv::cuda::TargetArchs::hasPtx(int major, int minor)
{
#ifndef HAVE_CUDA
(void) major;
(void) minor;
CV_UNUSED(major);
CV_UNUSED(minor);
throw_no_cuda();
#else
return cudaArch.hasPtx(major, minor);
@ -248,8 +248,8 @@ bool cv::cuda::TargetArchs::hasPtx(int major, int minor)
bool cv::cuda::TargetArchs::hasBin(int major, int minor)
{
#ifndef HAVE_CUDA
(void) major;
(void) minor;
CV_UNUSED(major);
CV_UNUSED(minor);
throw_no_cuda();
#else
return cudaArch.hasBin(major, minor);
@ -259,8 +259,8 @@ bool cv::cuda::TargetArchs::hasBin(int major, int minor)
bool cv::cuda::TargetArchs::hasEqualOrLessPtx(int major, int minor)
{
#ifndef HAVE_CUDA
(void) major;
(void) minor;
CV_UNUSED(major);
CV_UNUSED(minor);
throw_no_cuda();
#else
return cudaArch.hasEqualOrLessPtx(major, minor);
@ -270,8 +270,8 @@ bool cv::cuda::TargetArchs::hasEqualOrLessPtx(int major, int minor)
bool cv::cuda::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
{
#ifndef HAVE_CUDA
(void) major;
(void) minor;
CV_UNUSED(major);
CV_UNUSED(minor);
throw_no_cuda();
#else
return cudaArch.hasEqualOrGreaterPtx(major, minor);
@ -281,8 +281,8 @@ bool cv::cuda::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
bool cv::cuda::TargetArchs::hasEqualOrGreaterBin(int major, int minor)
{
#ifndef HAVE_CUDA
(void) major;
(void) minor;
CV_UNUSED(major);
CV_UNUSED(minor);
throw_no_cuda();
#else
return cudaArch.hasEqualOrGreaterBin(major, minor);
@ -827,8 +827,8 @@ int cv::cuda::DeviceInfo::maxThreadsPerMultiProcessor() const
void cv::cuda::DeviceInfo::queryMemory(size_t& _totalMemory, size_t& _freeMemory) const
{
#ifndef HAVE_CUDA
(void) _totalMemory;
(void) _freeMemory;
CV_UNUSED(_totalMemory);
CV_UNUSED(_freeMemory);
throw_no_cuda();
#else
int prevDeviceID = getDevice();
@ -894,7 +894,7 @@ namespace
void cv::cuda::printCudaDeviceInfo(int device)
{
#ifndef HAVE_CUDA
(void) device;
CV_UNUSED(device);
throw_no_cuda();
#else
int count = getCudaEnabledDeviceCount();
@ -980,7 +980,7 @@ void cv::cuda::printCudaDeviceInfo(int device)
void cv::cuda::printShortCudaDeviceInfo(int device)
{
#ifndef HAVE_CUDA
(void) device;
CV_UNUSED(device);
throw_no_cuda();
#else
int count = getCudaEnabledDeviceCount();
@ -1194,7 +1194,7 @@ namespace
String cv::cuda::getNppErrorMessage(int code)
{
#ifndef HAVE_CUDA
(void) code;
CV_UNUSED(code);
return String();
#else
return getErrorString(code, npp_errors, npp_error_num);
@ -1204,7 +1204,7 @@ String cv::cuda::getNppErrorMessage(int code)
String cv::cuda::getCudaDriverApiErrorMessage(int code)
{
#ifndef HAVE_CUDA
(void) code;
CV_UNUSED(code);
return String();
#else
return getErrorString(code, cu_errors, cu_errors_num);

@ -267,7 +267,7 @@ class cv::cuda::Stream::Impl
public:
Impl(void* ptr = 0)
{
(void) ptr;
CV_UNUSED(ptr);
throw_no_cuda();
}
};
@ -439,7 +439,7 @@ cv::cuda::Stream::Stream()
cv::cuda::Stream::Stream(const Ptr<GpuMat::Allocator>& allocator)
{
#ifndef HAVE_CUDA
(void) allocator;
CV_UNUSED(allocator);
throw_no_cuda();
#else
impl_ = makePtr<Impl>(allocator);
@ -473,7 +473,7 @@ void cv::cuda::Stream::waitForCompletion()
void cv::cuda::Stream::waitEvent(const Event& event)
{
#ifndef HAVE_CUDA
(void) event;
CV_UNUSED(event);
throw_no_cuda();
#else
cudaSafeCall( cudaStreamWaitEvent(impl_->stream, EventAccessor::getEvent(event), 0) );
@ -505,13 +505,13 @@ namespace
void cv::cuda::Stream::enqueueHostCallback(StreamCallback callback, void* userData)
{
#ifndef HAVE_CUDA
(void) callback;
(void) userData;
CV_UNUSED(callback);
CV_UNUSED(userData);
throw_no_cuda();
#else
#if CUDART_VERSION < 5000
(void) callback;
(void) userData;
CV_UNUSED(callback);
CV_UNUSED(userData);
CV_Error(cv::Error::StsNotImplemented, "This function requires CUDA >= 5.0");
#else
CallbackData* data = new CallbackData(callback, userData);
@ -658,7 +658,7 @@ namespace
void cv::cuda::setBufferPoolUsage(bool on)
{
#ifndef HAVE_CUDA
(void)on;
CV_UNUSED(on);
throw_no_cuda();
#else
enableMemoryPool = on;
@ -668,9 +668,9 @@ void cv::cuda::setBufferPoolUsage(bool on)
void cv::cuda::setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount)
{
#ifndef HAVE_CUDA
(void)deviceId;
(void)stackSize;
(void)stackCount;
CV_UNUSED(deviceId);
CV_UNUSED(stackSize);
CV_UNUSED(stackCount);
throw_no_cuda();
#else
const int currentDevice = getDevice();
@ -698,7 +698,7 @@ void cv::cuda::setBufferPoolConfig(int deviceId, size_t stackSize, int stackCoun
#ifndef HAVE_CUDA
cv::cuda::BufferPool::BufferPool(Stream& stream)
{
(void) stream;
CV_UNUSED(stream);
throw_no_cuda();
}
#else
@ -710,9 +710,9 @@ cv::cuda::BufferPool::BufferPool(Stream& stream) : allocator_(stream.impl_->allo
GpuMat cv::cuda::BufferPool::getBuffer(int rows, int cols, int type)
{
#ifndef HAVE_CUDA
(void) rows;
(void) cols;
(void) type;
CV_UNUSED(rows);
CV_UNUSED(cols);
CV_UNUSED(type);
throw_no_cuda();
#else
GpuMat buf(allocator_);
@ -782,7 +782,7 @@ Event cv::cuda::EventAccessor::wrapEvent(cudaEvent_t event)
cv::cuda::Event::Event(CreateFlags flags)
{
#ifndef HAVE_CUDA
(void) flags;
CV_UNUSED(flags);
throw_no_cuda();
#else
impl_ = makePtr<Impl>(flags);
@ -792,7 +792,7 @@ cv::cuda::Event::Event(CreateFlags flags)
void cv::cuda::Event::record(Stream& stream)
{
#ifndef HAVE_CUDA
(void) stream;
CV_UNUSED(stream);
throw_no_cuda();
#else
cudaSafeCall( cudaEventRecord(impl_->event, StreamAccessor::getStream(stream)) );
@ -826,8 +826,8 @@ void cv::cuda::Event::waitForCompletion()
float cv::cuda::Event::elapsedTime(const Event& start, const Event& end)
{
#ifndef HAVE_CUDA
(void) start;
(void) end;
CV_UNUSED(start);
CV_UNUSED(end);
throw_no_cuda();
#else
float ms;

@ -61,7 +61,7 @@ namespace cv { namespace directx {
int getTypeFromDXGI_FORMAT(const int iDXGI_FORMAT)
{
(void)iDXGI_FORMAT;
CV_UNUSED(iDXGI_FORMAT);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#else
@ -179,7 +179,7 @@ int getTypeFromDXGI_FORMAT(const int iDXGI_FORMAT)
int getTypeFromD3DFORMAT(const int iD3DFORMAT)
{
(void)iD3DFORMAT;
CV_UNUSED(iD3DFORMAT);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#else
@ -242,7 +242,7 @@ static bool g_isDirect3DDevice9Ex = false; // Direct3DDevice9Ex or Direct3DDevic
Context& initializeContextFromD3D11Device(ID3D11Device* pD3D11Device)
{
(void)pD3D11Device;
CV_UNUSED(pD3D11Device);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)
@ -350,7 +350,7 @@ Context& initializeContextFromD3D11Device(ID3D11Device* pD3D11Device)
Context& initializeContextFromD3D10Device(ID3D10Device* pD3D10Device)
{
(void)pD3D10Device;
CV_UNUSED(pD3D10Device);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)
@ -458,7 +458,7 @@ Context& initializeContextFromD3D10Device(ID3D10Device* pD3D10Device)
Context& initializeContextFromDirect3DDevice9Ex(IDirect3DDevice9Ex* pDirect3DDevice9Ex)
{
(void)pDirect3DDevice9Ex;
CV_UNUSED(pDirect3DDevice9Ex);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)
@ -568,7 +568,7 @@ Context& initializeContextFromDirect3DDevice9Ex(IDirect3DDevice9Ex* pDirect3DDev
Context& initializeContextFromDirect3DDevice9(IDirect3DDevice9* pDirect3DDevice9)
{
(void)pDirect3DDevice9;
CV_UNUSED(pDirect3DDevice9);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)
@ -764,7 +764,7 @@ namespace directx {
void convertToD3D11Texture2D(InputArray src, ID3D11Texture2D* pD3D11Texture2D)
{
(void)src; (void)pD3D11Texture2D;
CV_UNUSED(src); CV_UNUSED(pD3D11Texture2D);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif defined(HAVE_OPENCL)
@ -873,7 +873,7 @@ void convertToD3D11Texture2D(InputArray src, ID3D11Texture2D* pD3D11Texture2D)
void convertFromD3D11Texture2D(ID3D11Texture2D* pD3D11Texture2D, OutputArray dst)
{
(void)pD3D11Texture2D; (void)dst;
CV_UNUSED(pD3D11Texture2D); CV_UNUSED(dst);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif defined(HAVE_OPENCL)
@ -1004,7 +1004,7 @@ static void __OpenCLinitializeD3D10()
void convertToD3D10Texture2D(InputArray src, ID3D10Texture2D* pD3D10Texture2D)
{
(void)src; (void)pD3D10Texture2D;
CV_UNUSED(src); CV_UNUSED(pD3D10Texture2D);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif defined(HAVE_OPENCL)
@ -1065,7 +1065,7 @@ void convertToD3D10Texture2D(InputArray src, ID3D10Texture2D* pD3D10Texture2D)
}
void convertFromD3D10Texture2D(ID3D10Texture2D* pD3D10Texture2D, OutputArray dst)
{
(void)pD3D10Texture2D; (void)dst;
CV_UNUSED(pD3D10Texture2D); CV_UNUSED(dst);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif defined(HAVE_OPENCL)
@ -1152,7 +1152,7 @@ static void __OpenCLinitializeD3D9()
void convertToDirect3DSurface9(InputArray src, IDirect3DSurface9* pDirect3DSurface9, void* surfaceSharedHandle)
{
(void)src; (void)pDirect3DSurface9; (void)surfaceSharedHandle;
CV_UNUSED(src); CV_UNUSED(pDirect3DSurface9); CV_UNUSED(surfaceSharedHandle);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif defined(HAVE_OPENCL)
@ -1220,7 +1220,7 @@ void convertToDirect3DSurface9(InputArray src, IDirect3DSurface9* pDirect3DSurfa
void convertFromDirect3DSurface9(IDirect3DSurface9* pDirect3DSurface9, OutputArray dst, void* surfaceSharedHandle)
{
(void)pDirect3DSurface9; (void)dst; (void)surfaceSharedHandle;
CV_UNUSED(pDirect3DSurface9); CV_UNUSED(dst); CV_UNUSED(surfaceSharedHandle);
#if !defined(HAVE_DIRECTX)
NO_DIRECTX_SUPPORT_ERROR;
#elif defined(HAVE_OPENCL)

@ -160,7 +160,7 @@ static bool isDir(const cv::String& path, DIR* dir)
return status && ((attributes & FILE_ATTRIBUTE_DIRECTORY) != 0);
#else
(void)dir;
CV_UNUSED(dir);
struct stat stat_buf;
if (0 != stat( path.c_str(), &stat_buf))
return false;

@ -118,7 +118,7 @@ void MatAllocator::copy(UMatData* usrc, UMatData* udst, int dims, const size_t s
BufferPoolController* MatAllocator::getBufferPoolController(const char* id) const
{
(void)id;
CV_UNUSED(id);
static DummyBufferPoolController dummy;
return &dummy;
}

@ -190,7 +190,7 @@ void traceOpenCLCheck(cl_int status, const char* message)
CV_OCL_TRACE_CHECK_RESULT(check_result, msg); \
if (check_result != CL_SUCCESS) \
{ \
if (0) { const char* msg_ = (msg); (void)msg_; /* ensure const char* type (cv::String without c_str()) */ } \
if (0) { const char* msg_ = (msg); CV_UNUSED(msg_); /* ensure const char* type (cv::String without c_str()) */ } \
cv::String error_msg = CV_OCL_API_ERROR_MSG(check_result, msg); \
CV_Error(Error::OpenCLApiCallError, error_msg); \
} \
@ -210,7 +210,7 @@ void traceOpenCLCheck(cl_int status, const char* message)
CV_OCL_TRACE_CHECK_RESULT(check_result, msg); \
if (check_result != CL_SUCCESS && isRaiseError()) \
{ \
if (0) { const char* msg_ = (msg); (void)msg_; /* ensure const char* type (cv::String without c_str()) */ } \
if (0) { const char* msg_ = (msg); CV_UNUSED(msg_); /* ensure const char* type (cv::String without c_str()) */ } \
cv::String error_msg = CV_OCL_API_ERROR_MSG(check_result, msg); \
CV_Error(Error::OpenCLApiCallError, error_msg); \
} \

@ -104,11 +104,11 @@ namespace
void cv::cuda::setGlDevice(int device)
{
#ifndef HAVE_OPENGL
(void) device;
CV_UNUSED(device);
throw_no_ogl();
#else
#ifndef HAVE_CUDA
(void) device;
CV_UNUSED(device);
throw_no_cuda();
#else
cudaSafeCall( cudaGLSetGLDevice(device) );
@ -214,7 +214,7 @@ namespace
CV_DbgAssert( resource_ != 0 );
GraphicsMapHolder h(&resource_, stream);
(void) h;
CV_UNUSED(h);
void* dst;
size_t size;
@ -233,7 +233,7 @@ namespace
CV_DbgAssert( resource_ != 0 );
GraphicsMapHolder h(&resource_, stream);
(void) h;
CV_UNUSED(h);
void* src;
size_t size;
@ -456,11 +456,11 @@ cv::ogl::Buffer::Buffer() : rows_(0), cols_(0), type_(0)
cv::ogl::Buffer::Buffer(int arows, int acols, int atype, unsigned int abufId, bool autoRelease) : rows_(0), cols_(0), type_(0)
{
#ifndef HAVE_OPENGL
(void) arows;
(void) acols;
(void) atype;
(void) abufId;
(void) autoRelease;
CV_UNUSED(arows);
CV_UNUSED(acols);
CV_UNUSED(atype);
CV_UNUSED(abufId);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
impl_.reset(new Impl(abufId, autoRelease));
@ -473,10 +473,10 @@ cv::ogl::Buffer::Buffer(int arows, int acols, int atype, unsigned int abufId, bo
cv::ogl::Buffer::Buffer(Size asize, int atype, unsigned int abufId, bool autoRelease) : rows_(0), cols_(0), type_(0)
{
#ifndef HAVE_OPENGL
(void) asize;
(void) atype;
(void) abufId;
(void) autoRelease;
CV_UNUSED(asize);
CV_UNUSED(atype);
CV_UNUSED(abufId);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
impl_.reset(new Impl(abufId, autoRelease));
@ -489,9 +489,9 @@ cv::ogl::Buffer::Buffer(Size asize, int atype, unsigned int abufId, bool autoRel
cv::ogl::Buffer::Buffer(InputArray arr, Target target, bool autoRelease) : rows_(0), cols_(0), type_(0)
{
#ifndef HAVE_OPENGL
(void) arr;
(void) target;
(void) autoRelease;
CV_UNUSED(arr);
CV_UNUSED(target);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
const int kind = arr.kind();
@ -521,11 +521,11 @@ cv::ogl::Buffer::Buffer(InputArray arr, Target target, bool autoRelease) : rows_
void cv::ogl::Buffer::create(int arows, int acols, int atype, Target target, bool autoRelease)
{
#ifndef HAVE_OPENGL
(void) arows;
(void) acols;
(void) atype;
(void) target;
(void) autoRelease;
CV_UNUSED(arows);
CV_UNUSED(acols);
CV_UNUSED(atype);
CV_UNUSED(target);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
if (rows_ != arows || cols_ != acols || type_ != atype)
@ -554,7 +554,7 @@ void cv::ogl::Buffer::release()
void cv::ogl::Buffer::setAutoRelease(bool flag)
{
#ifndef HAVE_OPENGL
(void) flag;
CV_UNUSED(flag);
throw_no_ogl();
#else
impl_->setAutoRelease(flag);
@ -564,9 +564,9 @@ void cv::ogl::Buffer::setAutoRelease(bool flag)
void cv::ogl::Buffer::copyFrom(InputArray arr, Target target, bool autoRelease)
{
#ifndef HAVE_OPENGL
(void) arr;
(void) target;
(void) autoRelease;
CV_UNUSED(arr);
CV_UNUSED(target);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
const int kind = arr.kind();
@ -609,17 +609,17 @@ void cv::ogl::Buffer::copyFrom(InputArray arr, Target target, bool autoRelease)
void cv::ogl::Buffer::copyFrom(InputArray arr, cuda::Stream& stream, Target target, bool autoRelease)
{
#ifndef HAVE_OPENGL
(void) arr;
(void) stream;
(void) target;
(void) autoRelease;
CV_UNUSED(arr);
CV_UNUSED(stream);
CV_UNUSED(target);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
#ifndef HAVE_CUDA
(void) arr;
(void) stream;
(void) target;
(void) autoRelease;
CV_UNUSED(arr);
CV_UNUSED(stream);
CV_UNUSED(target);
CV_UNUSED(autoRelease);
throw_no_cuda();
#else
GpuMat dmat = arr.getGpuMat();
@ -634,7 +634,7 @@ void cv::ogl::Buffer::copyFrom(InputArray arr, cuda::Stream& stream, Target targ
void cv::ogl::Buffer::copyTo(OutputArray arr) const
{
#ifndef HAVE_OPENGL
(void) arr;
CV_UNUSED(arr);
throw_no_ogl();
#else
const int kind = arr.kind();
@ -674,13 +674,13 @@ void cv::ogl::Buffer::copyTo(OutputArray arr) const
void cv::ogl::Buffer::copyTo(OutputArray arr, cuda::Stream& stream) const
{
#ifndef HAVE_OPENGL
(void) arr;
(void) stream;
CV_UNUSED(arr);
CV_UNUSED(stream);
throw_no_ogl();
#else
#ifndef HAVE_CUDA
(void) arr;
(void) stream;
CV_UNUSED(arr);
CV_UNUSED(stream);
throw_no_cuda();
#else
arr.create(rows_, cols_, type_);
@ -693,8 +693,8 @@ void cv::ogl::Buffer::copyTo(OutputArray arr, cuda::Stream& stream) const
cv::ogl::Buffer cv::ogl::Buffer::clone(Target target, bool autoRelease) const
{
#ifndef HAVE_OPENGL
(void) target;
(void) autoRelease;
CV_UNUSED(target);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
ogl::Buffer buf;
@ -706,7 +706,7 @@ cv::ogl::Buffer cv::ogl::Buffer::clone(Target target, bool autoRelease) const
void cv::ogl::Buffer::bind(Target target) const
{
#ifndef HAVE_OPENGL
(void) target;
CV_UNUSED(target);
throw_no_ogl();
#else
impl_->bind(target);
@ -716,7 +716,7 @@ void cv::ogl::Buffer::bind(Target target) const
void cv::ogl::Buffer::unbind(Target target)
{
#ifndef HAVE_OPENGL
(void) target;
CV_UNUSED(target);
throw_no_ogl();
#else
gl::BindBuffer(target, 0);
@ -727,7 +727,7 @@ void cv::ogl::Buffer::unbind(Target target)
Mat cv::ogl::Buffer::mapHost(Access access)
{
#ifndef HAVE_OPENGL
(void) access;
CV_UNUSED(access);
throw_no_ogl();
#else
return Mat(rows_, cols_, type_, impl_->mapHost(access));
@ -772,11 +772,11 @@ void cv::ogl::Buffer::unmapDevice()
cuda::GpuMat cv::ogl::Buffer::mapDevice(cuda::Stream& stream)
{
#ifndef HAVE_OPENGL
(void) stream;
CV_UNUSED(stream);
throw_no_ogl();
#else
#ifndef HAVE_CUDA
(void) stream;
CV_UNUSED(stream);
throw_no_cuda();
#else
return GpuMat(rows_, cols_, type_, impl_->mapDevice(cuda::StreamAccessor::getStream(stream)));
@ -787,11 +787,11 @@ cuda::GpuMat cv::ogl::Buffer::mapDevice(cuda::Stream& stream)
void cv::ogl::Buffer::unmapDevice(cuda::Stream& stream)
{
#ifndef HAVE_OPENGL
(void) stream;
CV_UNUSED(stream);
throw_no_ogl();
#else
#ifndef HAVE_CUDA
(void) stream;
CV_UNUSED(stream);
throw_no_cuda();
#else
impl_->unmapDevice(cuda::StreamAccessor::getStream(stream));
@ -933,11 +933,11 @@ cv::ogl::Texture2D::Texture2D() : rows_(0), cols_(0), format_(NONE)
cv::ogl::Texture2D::Texture2D(int arows, int acols, Format aformat, unsigned int atexId, bool autoRelease) : rows_(0), cols_(0), format_(NONE)
{
#ifndef HAVE_OPENGL
(void) arows;
(void) acols;
(void) aformat;
(void) atexId;
(void) autoRelease;
CV_UNUSED(arows);
CV_UNUSED(acols);
CV_UNUSED(aformat);
CV_UNUSED(atexId);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
impl_.reset(new Impl(atexId, autoRelease));
@ -950,10 +950,10 @@ cv::ogl::Texture2D::Texture2D(int arows, int acols, Format aformat, unsigned int
cv::ogl::Texture2D::Texture2D(Size asize, Format aformat, unsigned int atexId, bool autoRelease) : rows_(0), cols_(0), format_(NONE)
{
#ifndef HAVE_OPENGL
(void) asize;
(void) aformat;
(void) atexId;
(void) autoRelease;
CV_UNUSED(asize);
CV_UNUSED(aformat);
CV_UNUSED(atexId);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
impl_.reset(new Impl(atexId, autoRelease));
@ -966,8 +966,8 @@ cv::ogl::Texture2D::Texture2D(Size asize, Format aformat, unsigned int atexId, b
cv::ogl::Texture2D::Texture2D(InputArray arr, bool autoRelease) : rows_(0), cols_(0), format_(NONE)
{
#ifndef HAVE_OPENGL
(void) arr;
(void) autoRelease;
CV_UNUSED(arr);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
const int kind = arr.kind();
@ -1036,10 +1036,10 @@ cv::ogl::Texture2D::Texture2D(InputArray arr, bool autoRelease) : rows_(0), cols
void cv::ogl::Texture2D::create(int arows, int acols, Format aformat, bool autoRelease)
{
#ifndef HAVE_OPENGL
(void) arows;
(void) acols;
(void) aformat;
(void) autoRelease;
CV_UNUSED(arows);
CV_UNUSED(acols);
CV_UNUSED(aformat);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
if (rows_ != arows || cols_ != acols || format_ != aformat)
@ -1068,7 +1068,7 @@ void cv::ogl::Texture2D::release()
void cv::ogl::Texture2D::setAutoRelease(bool flag)
{
#ifndef HAVE_OPENGL
(void) flag;
CV_UNUSED(flag);
throw_no_ogl();
#else
impl_->setAutoRelease(flag);
@ -1078,8 +1078,8 @@ void cv::ogl::Texture2D::setAutoRelease(bool flag)
void cv::ogl::Texture2D::copyFrom(InputArray arr, bool autoRelease)
{
#ifndef HAVE_OPENGL
(void) arr;
(void) autoRelease;
CV_UNUSED(arr);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
const int kind = arr.kind();
@ -1145,9 +1145,9 @@ void cv::ogl::Texture2D::copyFrom(InputArray arr, bool autoRelease)
void cv::ogl::Texture2D::copyTo(OutputArray arr, int ddepth, bool autoRelease) const
{
#ifndef HAVE_OPENGL
(void) arr;
(void) ddepth;
(void) autoRelease;
CV_UNUSED(arr);
CV_UNUSED(ddepth);
CV_UNUSED(autoRelease);
throw_no_ogl();
#else
const int kind = arr.kind();
@ -1400,9 +1400,9 @@ void cv::ogl::Arrays::bind() const
void cv::ogl::render(const ogl::Texture2D& tex, Rect_<double> wndRect, Rect_<double> texRect)
{
#ifndef HAVE_OPENGL
(void) tex;
(void) wndRect;
(void) texRect;
CV_UNUSED(tex);
CV_UNUSED(wndRect);
CV_UNUSED(texRect);
throw_no_ogl();
#else
if (!tex.empty())
@ -1472,9 +1472,9 @@ void cv::ogl::render(const ogl::Texture2D& tex, Rect_<double> wndRect, Rect_<dou
void cv::ogl::render(const ogl::Arrays& arr, int mode, Scalar color)
{
#ifndef HAVE_OPENGL
(void) arr;
(void) mode;
(void) color;
CV_UNUSED(arr);
CV_UNUSED(mode);
CV_UNUSED(color);
throw_no_ogl();
#else
if (!arr.empty())
@ -1491,10 +1491,10 @@ void cv::ogl::render(const ogl::Arrays& arr, int mode, Scalar color)
void cv::ogl::render(const ogl::Arrays& arr, InputArray indices, int mode, Scalar color)
{
#ifndef HAVE_OPENGL
(void) arr;
(void) indices;
(void) mode;
(void) color;
CV_UNUSED(arr);
CV_UNUSED(indices);
CV_UNUSED(mode);
CV_UNUSED(color);
throw_no_ogl();
#else
if (!arr.empty() && !indices.empty())
@ -1688,7 +1688,7 @@ Context& initializeContextFromGL()
void convertToGLTexture2D(InputArray src, Texture2D& texture)
{
(void)src; (void)texture;
CV_UNUSED(src); CV_UNUSED(texture);
#if !defined(HAVE_OPENGL)
NO_OPENGL_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)
@ -1742,7 +1742,7 @@ void convertToGLTexture2D(InputArray src, Texture2D& texture)
void convertFromGLTexture2D(const Texture2D& texture, OutputArray dst)
{
(void)texture; (void)dst;
CV_UNUSED(texture); CV_UNUSED(dst);
#if !defined(HAVE_OPENGL)
NO_OPENGL_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)
@ -1803,7 +1803,7 @@ void convertFromGLTexture2D(const Texture2D& texture, OutputArray dst)
//void mapGLBuffer(const Buffer& buffer, UMat& dst, int accessFlags)
UMat mapGLBuffer(const Buffer& buffer, int accessFlags)
{
(void)buffer; (void)accessFlags;
CV_UNUSED(buffer); CV_UNUSED(accessFlags);
#if !defined(HAVE_OPENGL)
NO_OPENGL_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)
@ -1855,7 +1855,7 @@ UMat mapGLBuffer(const Buffer& buffer, int accessFlags)
void unmapGLBuffer(UMat& u)
{
(void)u;
CV_UNUSED(u);
#if !defined(HAVE_OPENGL)
NO_OPENGL_SUPPORT_ERROR;
#elif !defined(HAVE_OPENCL)

@ -491,7 +491,7 @@ void cv::parallel_for_(const cv::Range& range, const cv::ParallelLoopBody& body,
else // nested parallel_for_() calls are not parallelized
#endif // CV_PARALLEL_FRAMEWORK
{
(void)nstripes;
CV_UNUSED(nstripes);
body(range);
}
}
@ -664,7 +664,7 @@ unsigned defaultNumberOfThreads()
void cv::setNumThreads( int threads_ )
{
(void)threads_;
CV_UNUSED(threads_);
#ifdef CV_PARALLEL_FRAMEWORK
int threads = (threads_ < 0) ? defaultNumberOfThreads() : (unsigned)threads_;
numThreads = threads;

@ -2215,7 +2215,7 @@ void setUseIPP(bool flag)
#ifdef HAVE_IPP
data->useIPP = (getIPPSingleton().useIPP)?flag:false;
#else
(void)flag;
CV_UNUSED(flag);
data->useIPP = false;
#endif
}
@ -2240,7 +2240,7 @@ void setUseIPP_NE(bool flag)
#ifdef HAVE_IPP
data->useIPP_NE = (getIPPSingleton().useIPP_NE)?flag:false;
#else
(void)flag;
CV_UNUSED(flag);
data->useIPP_NE = false;
#endif
}

@ -892,7 +892,7 @@ bool TraceManager::isActivated()
if (!isInitialized)
{
TraceManager& m = getTraceManager();
(void)m; // TODO
CV_UNUSED(m); // TODO
}
return activated;

@ -122,7 +122,7 @@ UMatData::~UMatData()
}
}
#else
(void)showWarn;
CV_UNUSED(showWarn);
#endif
originalUMatData = NULL;
}

@ -46,7 +46,7 @@ namespace ocl {
Context& initializeContextFromVA(VADisplay display, bool tryInterop)
{
(void)display; (void)tryInterop;
CV_UNUSED(display); CV_UNUSED(tryInterop);
#if !defined(HAVE_VA)
NO_VA_SUPPORT_ERROR;
#else // !HAVE_VA
@ -485,7 +485,7 @@ static void copy_convert_bgr_to_yv12(const VAImage& image, const Mat& bgr, unsig
void convertToVASurface(VADisplay display, InputArray src, VASurfaceID surface, Size size)
{
(void)display; (void)src; (void)surface; (void)size;
CV_UNUSED(display); CV_UNUSED(src); CV_UNUSED(surface); CV_UNUSED(size);
#if !defined(HAVE_VA)
NO_VA_SUPPORT_ERROR;
#else // !HAVE_VA
@ -589,7 +589,7 @@ void convertToVASurface(VADisplay display, InputArray src, VASurfaceID surface,
void convertFromVASurface(VADisplay display, VASurfaceID surface, Size size, OutputArray dst)
{
(void)display; (void)surface; (void)dst; (void)size;
CV_UNUSED(display); CV_UNUSED(surface); CV_UNUSED(dst); CV_UNUSED(size);
#if !defined(HAVE_VA)
NO_VA_SUPPORT_ERROR;
#else // !HAVE_VA

@ -793,7 +793,7 @@ CxCore_MulSpectrumsTest::CxCore_MulSpectrumsTest() : CxCore_DXTBaseTest( true, t
double CxCore_MulSpectrumsTest::get_success_error_level( int test_case_idx, int i, int j )
{
(void)test_case_idx;
CV_UNUSED(test_case_idx);
CV_Assert(i == OUTPUT);
CV_Assert(j == 0);
int elem_depth = CV_MAT_DEPTH(cvGetElemType(test_array[i][j]));

@ -157,14 +157,14 @@ namespace
void cv::cuda::gemm(InputArray _src1, InputArray _src2, double alpha, InputArray _src3, double beta, OutputArray _dst, int flags, Stream& stream)
{
#ifndef HAVE_CUBLAS
(void) _src1;
(void) _src2;
(void) alpha;
(void) _src3;
(void) beta;
(void) _dst;
(void) flags;
(void) stream;
CV_UNUSED(_src1);
CV_UNUSED(_src2);
CV_UNUSED(alpha);
CV_UNUSED(_src3);
CV_UNUSED(beta);
CV_UNUSED(_dst);
CV_UNUSED(flags);
CV_UNUSED(stream);
CV_Error(Error::StsNotImplemented, "The library was build without CUBLAS");
#else
// CUBLAS works with column-major matrices
@ -420,8 +420,8 @@ namespace
Ptr<DFT> cv::cuda::createDFT(Size dft_size, int flags)
{
#ifndef HAVE_CUFFT
(void) dft_size;
(void) flags;
CV_UNUSED(dft_size);
CV_UNUSED(flags);
CV_Error(Error::StsNotImplemented, "The library was build without CUFFT");
return Ptr<DFT>();
#else
@ -571,7 +571,7 @@ namespace
Ptr<Convolution> cv::cuda::createConvolution(Size user_block_size)
{
#ifndef HAVE_CUFFT
(void) user_block_size;
CV_UNUSED(user_block_size);
CV_Error(Error::StsNotImplemented, "The library was build without CUFFT");
return Ptr<Convolution>();
#else

@ -126,7 +126,7 @@ namespace
void bitScalar(const GpuMat& src, cv::Scalar value, bool, GpuMat& dst, const GpuMat& mask, double, Stream& stream, int op)
{
(void) mask;
CV_UNUSED(mask);
typedef void (*func_t)(const GpuMat& src, cv::Scalar value, GpuMat& dst, Stream& stream);
static const func_t funcs[3][6][4] =

@ -121,7 +121,7 @@ namespace
void cv::cuda::mulSpectrums(InputArray _src1, InputArray _src2, OutputArray _dst, int flags, bool conjB, Stream& stream)
{
(void) flags;
CV_UNUSED(flags);
GpuMat src1 = getInputMat(_src1, stream);
GpuMat src2 = getInputMat(_src2, stream);
@ -141,7 +141,7 @@ void cv::cuda::mulSpectrums(InputArray _src1, InputArray _src2, OutputArray _dst
void cv::cuda::mulAndScaleSpectrums(InputArray _src1, InputArray _src2, OutputArray _dst, int flags, float scale, bool conjB, Stream& stream)
{
(void) flags;
CV_UNUSED(flags);
GpuMat src1 = getInputMat(_src1, stream);
GpuMat src2 = getInputMat(_src2, stream);

@ -794,14 +794,14 @@ namespace
void EncoderCallBackFFMPEG::onBeginFrame(int frameNumber, PicType picType)
{
(void) frameNumber;
CV_UNUSED(frameNumber);
isKeyFrame_ = (picType == IFRAME);
}
void EncoderCallBackFFMPEG::onEndFrame(int frameNumber, PicType picType)
{
(void) frameNumber;
(void) picType;
CV_UNUSED(frameNumber);
CV_UNUSED(picType);
}
}

@ -63,8 +63,8 @@ namespace cv { namespace cuda { namespace device
float* s_distance, int* s_trainIdx)
{
#if __CUDA_ARCH__ >= 300
(void) s_distance;
(void) s_trainIdx;
CV_UNUSED(s_distance);
CV_UNUSED(s_trainIdx);
float d1, d2;
int i1, i2;
@ -174,9 +174,9 @@ namespace cv { namespace cuda { namespace device
float* s_distance, int* s_trainIdx, int* s_imgIdx)
{
#if __CUDA_ARCH__ >= 300
(void) s_distance;
(void) s_trainIdx;
(void) s_imgIdx;
CV_UNUSED(s_distance);
CV_UNUSED(s_trainIdx);
CV_UNUSED(s_imgIdx);
float d1, d2;
int i1, i2;

@ -1812,9 +1812,9 @@ namespace
void RGBA_to_mBGRA(InputArray _src, OutputArray _dst, int, Stream& _stream)
{
#if (CUDA_VERSION < 5000)
(void) _src;
(void) _dst;
(void) _stream;
CV_UNUSED(_src);
CV_UNUSED(_dst);
CV_UNUSED(_stream);
CV_Error( Error::StsBadFlag, "Unknown/unsupported color conversion code" );
#else
GpuMat src = _src.getGpuMat();
@ -2212,10 +2212,10 @@ void cv::cuda::swapChannels(InputOutputArray _image, const int dstOrder[4], Stre
void cv::cuda::gammaCorrection(InputArray _src, OutputArray _dst, bool forward, Stream& stream)
{
#if (CUDA_VERSION < 5000)
(void) _src;
(void) _dst;
(void) forward;
(void) stream;
CV_UNUSED(_src);
CV_UNUSED(_dst);
CV_UNUSED(forward);
CV_UNUSED(stream);
CV_Error(Error::StsNotImplemented, "This function works only with CUDA 5.0 or higher");
#else
typedef NppStatus (*func_t)(const Npp8u* pSrc, int nSrcStep, Npp8u* pDst, int nDstStep, NppiSize oSizeROI);

@ -201,8 +201,8 @@ namespace
void GeneralizedHoughBase::setTemplateImpl(InputArray templ, Point templCenter)
{
#ifndef HAVE_OPENCV_CUDAFILTERS
(void) templ;
(void) templCenter;
CV_UNUSED(templ);
CV_UNUSED(templCenter);
throw_no_cuda();
#else
calcEdges(templ, templEdges_, templDx_, templDy_);
@ -239,9 +239,9 @@ namespace
void GeneralizedHoughBase::detectImpl(InputArray image, OutputArray positions, OutputArray votes)
{
#ifndef HAVE_OPENCV_CUDAFILTERS
(void) image;
(void) positions;
(void) votes;
CV_UNUSED(image);
CV_UNUSED(positions);
CV_UNUSED(votes);
throw_no_cuda();
#else
calcEdges(image, imageEdges_, imageDx_, imageDy_);

@ -158,7 +158,7 @@ namespace
void HoughCirclesDetectorImpl::detect(InputArray _src, OutputArray circles, Stream& stream)
{
// TODO : implement async version
(void) stream;
CV_UNUSED(stream);
using namespace cv::cuda::device::hough;
using namespace cv::cuda::device::hough_circles;

@ -129,7 +129,7 @@ namespace
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines, Stream& stream)
{
// TODO : implement async version
(void) stream;
CV_UNUSED(stream);
using namespace cv::cuda::device::hough;
using namespace cv::cuda::device::hough_lines;

@ -132,7 +132,7 @@ namespace
void HoughSegmentDetectorImpl::detect(InputArray _src, OutputArray lines, Stream& stream)
{
// TODO : implement async version
(void) stream;
CV_UNUSED(stream);
using namespace cv::cuda::device::hough;
using namespace cv::cuda::device::hough_lines;

@ -494,12 +494,12 @@ public:
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size);
virtual NCVStatus dealloc(NCVMemSegment &seg);
virtual NcvBool isInitialized(void) const;
virtual NcvBool isCounting(void) const;
virtual NcvBool isInitialized() const;
virtual NcvBool isCounting() const;
virtual NCVMemoryType memType(void) const;
virtual Ncv32u alignment(void) const;
virtual size_t maxSize(void) const;
virtual NCVMemoryType memType() const;
virtual Ncv32u alignment() const;
virtual size_t maxSize() const;
private:
@ -527,12 +527,12 @@ public:
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size);
virtual NCVStatus dealloc(NCVMemSegment &seg);
virtual NcvBool isInitialized(void) const;
virtual NcvBool isCounting(void) const;
virtual NcvBool isInitialized() const;
virtual NcvBool isCounting() const;
virtual NCVMemoryType memType(void) const;
virtual Ncv32u alignment(void) const;
virtual size_t maxSize(void) const;
virtual NCVMemoryType memType() const;
virtual Ncv32u alignment() const;
virtual size_t maxSize() const;
private:

@ -738,10 +738,10 @@ struct RectConvert
static void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
#ifndef HAVE_OPENCV_OBJDETECT
(void) hypotheses;
(void) groupThreshold;
(void) eps;
(void) weights;
CV_UNUSED(hypotheses);
CV_UNUSED(groupThreshold);
CV_UNUSED(eps);
CV_UNUSED(weights);
CV_Error(cv::Error::StsNotImplemented, "This functionality requires objdetect module");
#else
std::vector<cv::Rect> rects(hypotheses.size());

@ -213,7 +213,7 @@ void cv::cuda::solvePnPRansac(const Mat& object, const Mat& image, const Mat& ca
int num_iters, float max_dist, int min_inlier_count,
std::vector<int>* inliers)
{
(void)min_inlier_count;
CV_UNUSED(min_inlier_count);
CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3);
CV_Assert(image.rows == 1 && image.cols > 0 && image.type() == CV_32FC2);
CV_Assert(object.cols == image.cols);

@ -127,7 +127,7 @@ static NCVStatus drawRectsWrapperDevice(T *d_dst,
T color,
cudaStream_t cuStream)
{
(void)cuStream;
CV_UNUSED(cuStream);
ncvAssertReturn(d_dst != NULL && d_rects != NULL, NCV_NULL_PTR);
ncvAssertReturn(dstWidth > 0 && dstHeight > 0, NCV_DIMENSIONS_INVALID);
ncvAssertReturn(dstStride >= dstWidth, NCV_INVALID_STEP);

@ -714,7 +714,7 @@ struct applyHaarClassifierAnchorParallelFunctor
template<class TList>
void call(TList tl)
{
(void)tl;
CV_UNUSED(tl);
applyHaarClassifierAnchorParallel <
Loki::TL::TypeAt<TList, 0>::Result::value,
Loki::TL::TypeAt<TList, 1>::Result::value,
@ -824,7 +824,7 @@ struct applyHaarClassifierClassifierParallelFunctor
template<class TList>
void call(TList tl)
{
(void)tl;
CV_UNUSED(tl);
applyHaarClassifierClassifierParallel <
Loki::TL::TypeAt<TList, 0>::Result::value,
Loki::TL::TypeAt<TList, 1>::Result::value,
@ -905,7 +905,7 @@ struct initializeMaskVectorFunctor
template<class TList>
void call(TList tl)
{
(void)tl;
CV_UNUSED(tl);
initializeMaskVector <
Loki::TL::TypeAt<TList, 0>::Result::value,
Loki::TL::TypeAt<TList, 1>::Result::value >
@ -2113,11 +2113,11 @@ static NCVStatus loadFromXML(const cv::String &filename,
std::vector<HaarFeature64> &haarFeatures)
{
#ifndef HAVE_OPENCV_OBJDETECT
(void) filename;
(void) haar;
(void) haarStages;
(void) haarClassifierNodes;
(void) haarFeatures;
CV_UNUSED(filename);
CV_UNUSED(haar);
CV_UNUSED(haarStages);
CV_UNUSED(haarClassifierNodes);
CV_UNUSED(haarFeatures);
CV_Error(cv::Error::StsNotImplemented, "This functionality requires objdetect module");
return NCV_HAAR_XML_LOADING_EXCEPTION;
#else

@ -212,7 +212,7 @@ namespace NCVRuntimeTemplateBool
static void call(Func &functor, std::vector<int> &templateParams)
{
(void)templateParams;
CV_UNUSED(templateParams);
functor.call(TList());
}
};

@ -498,7 +498,7 @@ namespace cv { namespace cuda { namespace device
void labelComponents(const PtrStepSzb& edges, PtrStepSzi comps, int flags, cudaStream_t stream)
{
(void) flags;
CV_UNUSED(flags);
dim3 block(CTA_SIZE_X, CTA_SIZE_Y);
dim3 grid(divUp(edges.cols, TILE_COLS), divUp(edges.rows, TILE_ROWS));

@ -231,7 +231,7 @@ namespace
void GMGImpl::getBackgroundImage(OutputArray backgroundImage) const
{
(void) backgroundImage;
CV_UNUSED(backgroundImage);
CV_Error(Error::StsNotImplemented, "Not implemented");
}

@ -265,7 +265,7 @@ bool TestHaarCascadeApplication::process()
{
// calculations here
FpuControl fpu;
(void) fpu;
CV_UNUSED(fpu);
ncvStat = ncvApplyHaarClassifierCascade_host(
h_integralImage, h_rectStdDev, h_pixelMask,

@ -271,7 +271,7 @@ void generateHaarLoaderTests(NCVAutoTestLister &testLister)
void generateHaarApplicationTests(NCVAutoTestLister &testLister, NCVTestSourceProvider<Ncv8u> &src,
Ncv32u maxWidth, Ncv32u maxHeight)
{
(void)maxHeight;
CV_UNUSED(maxHeight);
for (Ncv32u i=100; i<512; i+=41)
{
for (Ncv32u j=100; j<128; j+=25)
@ -292,7 +292,7 @@ void generateHaarApplicationTests(NCVAutoTestLister &testLister, NCVTestSourcePr
static void devNullOutput(const cv::String& msg)
{
(void)msg;
CV_UNUSED(msg);
}
}

@ -731,7 +731,7 @@ namespace cv { namespace cuda { namespace device
bool correct_gamma,
const cudaStream_t& stream)
{
(void)nbins;
CV_UNUSED(nbins);
const int nthreads = 256;
dim3 bdim(nthreads, 1);
@ -806,7 +806,7 @@ namespace cv { namespace cuda { namespace device
bool correct_gamma,
const cudaStream_t& stream)
{
(void)nbins;
CV_UNUSED(nbins);
const int nthreads = 256;
dim3 bdim(nthreads, 1);

@ -89,7 +89,7 @@ namespace pyrlk
{
static __host__ __forceinline__ void bindTexture_(PtrStepSz<typename TypeVec<T, cn>::vec_type> I)
{
(void)I;
CV_UNUSED(I);
}
};
@ -112,7 +112,7 @@ namespace pyrlk
}
static __host__ __forceinline__ void bindTexture_(PtrStepSz<ushort>& I)
{
(void)I;
CV_UNUSED(I);
}
};
template <> struct Tex_I<1, int>
@ -123,7 +123,7 @@ namespace pyrlk
}
static __host__ __forceinline__ void bindTexture_(PtrStepSz<int>& I)
{
(void)I;
CV_UNUSED(I);
}
};
template <> struct Tex_I<1, float>
@ -146,7 +146,7 @@ namespace pyrlk
}
static __host__ __forceinline__ void bindTexture_(PtrStepSz<uchar3> I)
{
(void)I;
CV_UNUSED(I);
}
};
template <> struct Tex_I<3, ushort>
@ -157,7 +157,7 @@ namespace pyrlk
}
static __host__ __forceinline__ void bindTexture_(PtrStepSz<ushort3> I)
{
(void)I;
CV_UNUSED(I);
}
};
template <> struct Tex_I<3, int>
@ -168,7 +168,7 @@ namespace pyrlk
}
static __host__ __forceinline__ void bindTexture_(PtrStepSz<int3> I)
{
(void)I;
CV_UNUSED(I);
}
};
template <> struct Tex_I<3, float>
@ -179,7 +179,7 @@ namespace pyrlk
}
static __host__ __forceinline__ void bindTexture_(PtrStepSz<float3> I)
{
(void)I;
CV_UNUSED(I);
}
};
// ****************** 4 channel specializations ************************
@ -222,7 +222,7 @@ namespace pyrlk
{
static __host__ __forceinline__ void bindTexture_(PtrStepSz<typename TypeVec<T,cn>::vec_type>& J)
{
(void)J;
CV_UNUSED(J);
}
};
template <> struct Tex_J<1, uchar>
@ -757,8 +757,8 @@ namespace pyrlk
int level, dim3 block, cudaStream_t stream)
{
dim3 grid(ptcount);
(void)I;
(void)J;
CV_UNUSED(I);
CV_UNUSED(J);
if (level == 0 && err)
sparseKernel<cn, PATCH_X, PATCH_Y, true, T> <<<grid, block, 0, stream >>>(prevPts, nextPts, status, err, level, rows, cols);
else

@ -89,9 +89,9 @@ namespace cv { namespace cuda { namespace device
{
static void call(PtrStepSz<T> src, PtrStepSz<T> srcWhole, int xoff, int yoff, PtrStepSzf mapx, PtrStepSzf mapy, PtrStepSz<T> dst, const float* borderValue, bool)
{
(void)srcWhole;
(void)xoff;
(void)yoff;
CV_UNUSED(srcWhole);
CV_UNUSED(xoff);
CV_UNUSED(yoff);
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type;
dim3 block(32, 8);

@ -160,9 +160,9 @@ namespace cv { namespace cuda { namespace device
{
static void call(PtrStepSz<T> src, PtrStepSz<T> srcWhole, int xoff, int yoff, PtrStepSz<T> dst, const float* borderValue, bool)
{
(void)xoff;
(void)yoff;
(void)srcWhole;
CV_UNUSED(xoff);
CV_UNUSED(yoff);
CV_UNUSED(srcWhole);
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type;

@ -478,7 +478,7 @@ namespace
static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream)
{
(void)dsize;
CV_UNUSED(dsize);
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC};
NppStreamHandler h(stream);

@ -317,8 +317,8 @@ namespace block_reduce_detail
__device__ static void reduce(Pointer smem, Reference val, uint tid, Op op)
{
#if CV_CUDEV_ARCH >= 300
(void) smem;
(void) tid;
CV_UNUSED(smem);
CV_UNUSED(tid);
Unroll<N / 2, Pointer, Reference, Op>::loopShfl(val, op, N);
#else

@ -195,8 +195,8 @@ template <typename T> struct TexturePtr
// Use the texture object
return tex2D<T>(texObj, x, y);
#else
(void) y;
(void) x;
CV_UNUSED(y);
CV_UNUSED(x);
return T();
#endif
}

@ -93,8 +93,8 @@ __device__ static double atomicAdd(double* address, double val)
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}
@ -123,8 +123,8 @@ __device__ static float atomicMin(float* address, float val)
} while (assumed != old);
return __int_as_float(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0f;
#endif
}
@ -141,8 +141,8 @@ __device__ static double atomicMin(double* address, double val)
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}
@ -171,8 +171,8 @@ __device__ static float atomicMax(float* address, float val)
} while (assumed != old);
return __int_as_float(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0f;
#endif
}
@ -189,8 +189,8 @@ __device__ static double atomicMax(double* address, double val)
} while (assumed != old);
return __longlong_as_double(old);
#else
(void) address;
(void) val;
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}

@ -193,8 +193,8 @@ namespace warp_reduce_detail
__device__ static void reduce(Pointer smem, Reference val, uint tid, Op op)
{
#if CV_CUDEV_ARCH >= 300
(void) smem;
(void) tid;
CV_UNUSED(smem);
CV_UNUSED(tid);
mergeShfl(val, 16, 32, op);
mergeShfl(val, 8, 32, op);

@ -59,8 +59,8 @@ template <typename T>
__device__ T warpScanInclusive(T data, volatile T* smem, uint tid)
{
#if CV_CUDEV_ARCH >= 300
(void) smem;
(void) tid;
CV_UNUSED(smem);
CV_UNUSED(tid);
const uint laneId = Warp::laneId();

@ -337,7 +337,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const;
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const {(void)inputs; (void)outputs; return 0;}
const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
CV_PROP String type; //!< Type name which was used for creating layer by layer factory.

@ -7,7 +7,7 @@ typedef std::vector<std::vector<dnn::MatShape> > vector_vector_MatShape;
template<>
bool pyopencv_to(PyObject *o, dnn::DictValue &dv, const char *name)
{
(void)name;
CV_UNUSED(name);
if (!o || o == Py_None)
return true; //Current state will be used
else if (PyLong_Check(o))

@ -3191,7 +3191,7 @@ void Layer::finalize(const std::vector<Mat> &inputs, std::vector<Mat> &outputs)
void Layer::finalize(const std::vector<Mat*> &input, std::vector<Mat> &output)
{
(void)input;(void)output;
CV_UNUSED(input);CV_UNUSED(output);
}
void Layer::finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr)

@ -76,7 +76,7 @@ void initializeLayerFactory()
{
CV_TRACE_FUNCTION();
static ProtobufShutdown protobufShutdown; (void)protobufShutdown;
static ProtobufShutdown protobufShutdown; CV_UNUSED(protobufShutdown);
CV_DNN_REGISTER_LAYER_CLASS(Slice, SliceLayer);
CV_DNN_REGISTER_LAYER_CLASS(Split, SplitLayer);

@ -367,7 +367,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
int64 flops = 0;
for(int i = 0; i < inputs.size(); i++)

@ -444,7 +444,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
CV_Assert(inputs.size());
long flops = inputs.size() * total(inputs[0]);

@ -461,7 +461,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)inputs; // suppress unused variable warning
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
int innerSize = blobs[0].size[1];

@ -402,7 +402,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
CV_Assert(inputs.size() > 0);
long flops = 0;

@ -364,7 +364,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
long flops = 0;
for(int i = 0; i < inputs.size(); i++)
{

@ -897,7 +897,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)inputs; // suppress unused variable warning
CV_UNUSED(inputs); // suppress unused variable warning
long flops = 0;
for(int i = 0; i < outputs.size(); i++)

@ -546,7 +546,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
long flops = 0;
for (int i = 0; i < inputs.size(); i++)

@ -315,7 +315,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
int64 flops = 0;
for(int i = 0; i < inputs.size(); i++)

@ -193,7 +193,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
int64 flops = 0;
for(int i = 0; i < inputs.size(); i++)

@ -236,7 +236,7 @@ public:
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
long flops = 0;
for(int i = 0; i < inputs.size(); i++)
{

@ -329,7 +329,7 @@ public:
int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
(void)outputs; // suppress unused variable warning
CV_UNUSED(outputs); // suppress unused variable warning
int64 flops = 0;
for (int i = 0; i < inputs.size(); i++)

@ -193,7 +193,7 @@ void SimpleBlobDetectorImpl::findBlobs(InputArray _image, InputArray _binaryImag
CV_INSTRUMENT_REGION()
Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
(void)image;
CV_UNUSED(image);
centers.clear();
std::vector < std::vector<Point> > contours;

@ -779,7 +779,7 @@ static void computeKeyPoints(const Mat& imagePyramid,
bool useOCL, int fastThreshold )
{
#ifndef HAVE_OPENCL
(void)uimagePyramid;(void)ulayerInfo;(void)useOCL;
CV_UNUSED(uimagePyramid);CV_UNUSED(ulayerInfo);CV_UNUSED(useOCL);
#endif
int i, nkeypoints, level, nlevels = (int)layerInfo.size();

@ -159,7 +159,7 @@ public:
LshTable(unsigned int feature_size, unsigned int key_size)
{
feature_size_ = feature_size;
(void)key_size;
CV_UNUSED(key_size);
std::cerr << "LSH is not implemented for that type" << std::endl;
assert(0);
}

@ -17,7 +17,7 @@ PyObject* pyopencv_from(const cvflann_flann_distance_t& value)
template<>
bool pyopencv_to(PyObject *o, cv::flann::IndexParams& p, const char *name)
{
(void)name;
CV_UNUSED(name);
bool ok = true;
PyObject* key = NULL;
PyObject* item = NULL;

@ -409,8 +409,8 @@ void cv::imshow(const String& winname, const ogl::Texture2D& _tex)
{
CV_TRACE_FUNCTION();
#ifndef HAVE_OPENGL
(void) winname;
(void) _tex;
CV_UNUSED(winname);
CV_UNUSED(_tex);
CV_Error(cv::Error::OpenGlNotSupported, "The library is compiled without OpenGL support");
#else
const double useGl = getWindowProperty(winname, WND_PROP_OPENGL);
@ -728,7 +728,7 @@ CV_IMPL void cvDisplayOverlay(const char* , const char* , int )
CV_IMPL int cvStartLoop(int (*)(int argc, char *argv[]), int , char* argv[])
{
(void)argv;
CV_UNUSED(argv);
CV_NO_GUI_ERROR("cvStartLoop");
}

@ -624,7 +624,7 @@ double cvGetOpenGlProp_W32(const char* name)
__END__;
#endif
(void)name;
CV_UNUSED(name);
return result;
}

@ -65,9 +65,9 @@ namespace cv{
inline
void operator()(int r, int c, int l){
(void)r;
(void)c;
(void)l;
CV_UNUSED(r);
CV_UNUSED(c);
CV_UNUSED(l);
}
void finish(){

@ -3451,7 +3451,7 @@ static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize,
// in case of scale_x && scale_y is equal to 2
// INTER_AREA (fast) also is equal to INTER_LINEAR
if( interpolation == INTER_LINEAR && is_area_fast && iscale_x == 2 && iscale_y == 2 )
/*interpolation = INTER_AREA*/(void)0; // INTER_AREA is slower
/*interpolation = INTER_AREA*/CV_UNUSED(0); // INTER_AREA is slower
if( !(cn <= 4 &&
(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR ||

@ -4102,7 +4102,7 @@ void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
((ksize.width == 3 && ksize.height == 3) ||
(ksize.width == 5 && ksize.height == 5)) &&
_src.rows() > ksize.height && _src.cols() > ksize.width);
(void)useOpenCL;
CV_UNUSED(useOpenCL);
int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);

@ -29,7 +29,7 @@ static void throwJavaException(JNIEnv *env, const std::exception *e, const char
env->ThrowNew(je, what.c_str());
LOGE("%s caught %s", method, what.c_str());
(void)method; // avoid "unused" warning
CV_UNUSED(method); // avoid "unused" warning
}
extern "C" {

@ -1,7 +1,7 @@
template<>
bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const char *name)
{
(void)name;
CV_UNUSED(name);
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.max_iter, &dst.epsilon) > 0;
@ -10,7 +10,7 @@ bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const char *name)
template<>
bool pyopencv_to(PyObject* obj, CvSlice& r, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if(PyObject_Size(obj) == 0)

@ -98,7 +98,7 @@ public:
return true;
}
virtual void doTrain(InputArray points) { (void)points; }
virtual void doTrain(InputArray points) { CV_UNUSED(points); }
void clear()
{

@ -797,7 +797,7 @@ PyObject* pyopencv_from(const bool& value)
template<>
bool pyopencv_to(PyObject* obj, bool& value, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
int _val = PyObject_IsTrue(obj);
@ -816,7 +816,7 @@ PyObject* pyopencv_from(const size_t& value)
template<>
bool pyopencv_to(PyObject* obj, size_t& value, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
value = (int)PyLong_AsUnsignedLong(obj);
@ -832,7 +832,7 @@ PyObject* pyopencv_from(const int& value)
template<>
bool pyopencv_to(PyObject* obj, int& value, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if(PyInt_Check(obj))
@ -853,7 +853,7 @@ PyObject* pyopencv_from(const uchar& value)
template<>
bool pyopencv_to(PyObject* obj, uchar& value, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
int ivalue = (int)PyInt_AsLong(obj);
@ -870,7 +870,7 @@ PyObject* pyopencv_from(const double& value)
template<>
bool pyopencv_to(PyObject* obj, double& value, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if(!!PyInt_CheckExact(obj))
@ -889,7 +889,7 @@ PyObject* pyopencv_from(const float& value)
template<>
bool pyopencv_to(PyObject* obj, float& value, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if(!!PyInt_CheckExact(obj))
@ -914,7 +914,7 @@ PyObject* pyopencv_from(const String& value)
template<>
bool pyopencv_to(PyObject* obj, String& value, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
const char* str = PyString_AsString(obj);
@ -927,7 +927,7 @@ bool pyopencv_to(PyObject* obj, String& value, const char* name)
template<>
bool pyopencv_to(PyObject* obj, Size& sz, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "ii", &sz.width, &sz.height) > 0;
@ -942,7 +942,7 @@ PyObject* pyopencv_from(const Size& sz)
template<>
bool pyopencv_to(PyObject* obj, Size_<float>& sz, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "ff", &sz.width, &sz.height) > 0;
@ -957,7 +957,7 @@ PyObject* pyopencv_from(const Size_<float>& sz)
template<>
bool pyopencv_to(PyObject* obj, Rect& r, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
@ -972,7 +972,7 @@ PyObject* pyopencv_from(const Rect& r)
template<>
bool pyopencv_to(PyObject* obj, Rect2d& r, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "dddd", &r.x, &r.y, &r.width, &r.height) > 0;
@ -987,7 +987,7 @@ PyObject* pyopencv_from(const Rect2d& r)
template<>
bool pyopencv_to(PyObject* obj, Range& r, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if(PyObject_Size(obj) == 0)
@ -1007,7 +1007,7 @@ PyObject* pyopencv_from(const Range& r)
template<>
bool pyopencv_to(PyObject* obj, Point& p, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if(!!PyComplex_CheckExact(obj))
@ -1023,7 +1023,7 @@ bool pyopencv_to(PyObject* obj, Point& p, const char* name)
template<>
bool pyopencv_to(PyObject* obj, Point2f& p, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if(!!PyComplex_CheckExact(obj))
@ -1039,7 +1039,7 @@ bool pyopencv_to(PyObject* obj, Point2f& p, const char* name)
template<>
bool pyopencv_to(PyObject* obj, Point2d& p, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
if(!!PyComplex_CheckExact(obj))
@ -1055,7 +1055,7 @@ bool pyopencv_to(PyObject* obj, Point2d& p, const char* name)
template<>
bool pyopencv_to(PyObject* obj, Point3f& p, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "fff", &p.x, &p.y, &p.z) > 0;
@ -1064,7 +1064,7 @@ bool pyopencv_to(PyObject* obj, Point3f& p, const char* name)
template<>
bool pyopencv_to(PyObject* obj, Point3d& p, const char* name)
{
(void)name;
CV_UNUSED(name);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "ddd", &p.x, &p.y, &p.z) > 0;
@ -1090,7 +1090,7 @@ PyObject* pyopencv_from(const Point3f& p)
static bool pyopencv_to(PyObject* obj, Vec4d& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "dddd", &v[0], &v[1], &v[2], &v[3]) > 0;
@ -1103,7 +1103,7 @@ bool pyopencv_to(PyObject* obj, Vec4d& v, const char* name)
static bool pyopencv_to(PyObject* obj, Vec4f& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "ffff", &v[0], &v[1], &v[2], &v[3]) > 0;
@ -1116,7 +1116,7 @@ bool pyopencv_to(PyObject* obj, Vec4f& v, const char* name)
static bool pyopencv_to(PyObject* obj, Vec4i& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "iiii", &v[0], &v[1], &v[2], &v[3]) > 0;
@ -1129,7 +1129,7 @@ bool pyopencv_to(PyObject* obj, Vec4i& v, const char* name)
static bool pyopencv_to(PyObject* obj, Vec3d& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "ddd", &v[0], &v[1], &v[2]) > 0;
@ -1142,7 +1142,7 @@ bool pyopencv_to(PyObject* obj, Vec3d& v, const char* name)
static bool pyopencv_to(PyObject* obj, Vec3f& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "fff", &v[0], &v[1], &v[2]) > 0;
@ -1155,7 +1155,7 @@ bool pyopencv_to(PyObject* obj, Vec3f& v, const char* name)
static bool pyopencv_to(PyObject* obj, Vec3i& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "iii", &v[0], &v[1], &v[2]) > 0;
@ -1168,7 +1168,7 @@ bool pyopencv_to(PyObject* obj, Vec3i& v, const char* name)
static bool pyopencv_to(PyObject* obj, Vec2d& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "dd", &v[0], &v[1]) > 0;
@ -1181,7 +1181,7 @@ bool pyopencv_to(PyObject* obj, Vec2d& v, const char* name)
static bool pyopencv_to(PyObject* obj, Vec2f& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "ff", &v[0], &v[1]) > 0;
@ -1194,7 +1194,7 @@ bool pyopencv_to(PyObject* obj, Vec2f& v, const char* name)
static bool pyopencv_to(PyObject* obj, Vec2i& v, ArgInfo info)
{
(void)info;
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "ii", &v[0], &v[1]) > 0;
@ -1536,7 +1536,7 @@ template<> struct pyopencvVecConverter<RotatedRect>
template<>
bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name)
{
(void)name;
CV_UNUSED(name);
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0;
@ -1551,7 +1551,7 @@ PyObject* pyopencv_from(const TermCriteria& src)
template<>
bool pyopencv_to(PyObject *obj, RotatedRect& dst, const char *name)
{
(void)name;
CV_UNUSED(name);
if(!obj)
return true;
return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0;

@ -223,7 +223,7 @@ MultiBandBlender::MultiBandBlender(int try_gpu, int num_bands, int weight_type)
can_use_gpu_ = try_gpu && cuda::getCudaEnabledDeviceCount();
gpu_feed_idx_ = 0;
#else
(void) try_gpu;
CV_UNUSED(try_gpu);
can_use_gpu_ = false;
#endif
@ -868,9 +868,9 @@ void createLaplacePyrGpu(InputArray img, int num_levels, std::vector<UMat> &pyr)
gpu_pyr[num_levels].download(pyr[num_levels]);
#else
(void)img;
(void)num_levels;
(void)pyr;
CV_UNUSED(img);
CV_UNUSED(num_levels);
CV_UNUSED(pyr);
CV_Error(Error::StsNotImplemented, "CUDA optimization is unavailable");
#endif
}
@ -908,7 +908,7 @@ void restoreImageFromLaplacePyrGpu(std::vector<UMat> &pyr)
gpu_pyr[0].download(pyr[0]);
#else
(void)pyr;
CV_UNUSED(pyr);
CV_Error(Error::StsNotImplemented, "CUDA optimization is unavailable");
#endif
}

@ -447,11 +447,11 @@ SurfFeaturesFinder::SurfFeaturesFinder(double hess_thresh, int num_octaves, int
extractor_ = sextractor_;
}
#else
(void)hess_thresh;
(void)num_octaves;
(void)num_layers;
(void)num_octaves_descr;
(void)num_layers_descr;
CV_UNUSED(hess_thresh);
CV_UNUSED(num_octaves);
CV_UNUSED(num_layers);
CV_UNUSED(num_octaves_descr);
CV_UNUSED(num_layers_descr);
CV_Error( Error::StsNotImplemented, "OpenCV was built without SURF support" );
#endif
}
@ -705,7 +705,7 @@ void FeaturesMatcher::operator ()(const std::vector<ImageFeatures> &features, st
BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2)
{
(void)try_use_gpu;
CV_UNUSED(try_use_gpu);
#ifdef HAVE_OPENCV_CUDAFEATURES2D
if (try_use_gpu && getCudaEnabledDeviceCount() > 0)

@ -69,7 +69,7 @@ namespace cv { namespace cuda { namespace device
static void buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, InputArray _T,
float scale, OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null())
{
(void) src_size;
CV_UNUSED(src_size);
Mat K = _K.getMat();
Mat R = _R.getMat();
@ -97,7 +97,7 @@ static void buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray _K, Input
static void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale,
OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null())
{
(void) src_size;
CV_UNUSED(src_size);
Mat K = _K.getMat();
Mat R = _R.getMat();
@ -122,7 +122,7 @@ static void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray _K, I
static void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale,
OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null())
{
(void) src_size;
CV_UNUSED(src_size);
Mat K = _K.getMat();
Mat R = _R.getMat();
@ -156,12 +156,12 @@ Rect cv::detail::PlaneWarperGpu::buildMaps(Size src_size, InputArray K, InputArr
cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
#ifndef HAVE_CUDA
(void)src_size;
(void)K;
(void)R;
(void)T;
(void)xmap;
(void)ymap;
CV_UNUSED(src_size);
CV_UNUSED(K);
CV_UNUSED(R);
CV_UNUSED(T);
CV_UNUSED(xmap);
CV_UNUSED(ymap);
throw_no_cuda();
#else
projector_.setCameraParams(K, R, T);
@ -189,13 +189,13 @@ Point cv::detail::PlaneWarperGpu::warp(const cuda::GpuMat & src, InputArray K, I
cuda::GpuMat & dst)
{
#ifndef HAVE_OPENCV_CUDAWARPING
(void)src;
(void)K;
(void)R;
(void)T;
(void)interp_mode;
(void)border_mode;
(void)dst;
CV_UNUSED(src);
CV_UNUSED(K);
CV_UNUSED(R);
CV_UNUSED(T);
CV_UNUSED(interp_mode);
CV_UNUSED(border_mode);
CV_UNUSED(dst);
throw_no_cuda();
#else
Rect dst_roi = buildMaps(src.size(), K, R, T, d_xmap_, d_ymap_);
@ -208,11 +208,11 @@ Point cv::detail::PlaneWarperGpu::warp(const cuda::GpuMat & src, InputArray K, I
Rect cv::detail::SphericalWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
#ifndef HAVE_CUDA
(void)src_size;
(void)K;
(void)R;
(void)xmap;
(void)ymap;
CV_UNUSED(src_size);
CV_UNUSED(K);
CV_UNUSED(R);
CV_UNUSED(xmap);
CV_UNUSED(ymap);
throw_no_cuda();
#else
projector_.setCameraParams(K, R);
@ -232,12 +232,12 @@ Point cv::detail::SphericalWarperGpu::warp(const cuda::GpuMat & src, InputArray
cuda::GpuMat & dst)
{
#ifndef HAVE_OPENCV_CUDAWARPING
(void)src;
(void)K;
(void)R;
(void)interp_mode;
(void)border_mode;
(void)dst;
CV_UNUSED(src);
CV_UNUSED(K);
CV_UNUSED(R);
CV_UNUSED(interp_mode);
CV_UNUSED(border_mode);
CV_UNUSED(dst);
throw_no_cuda();
#else
Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_);
@ -252,11 +252,11 @@ Rect cv::detail::CylindricalWarperGpu::buildMaps(Size src_size, InputArray K, In
cuda::GpuMat & xmap, cuda::GpuMat & ymap)
{
#ifndef HAVE_CUDA
(void)src_size;
(void)K;
(void)R;
(void)xmap;
(void)ymap;
CV_UNUSED(src_size);
CV_UNUSED(K);
CV_UNUSED(R);
CV_UNUSED(xmap);
CV_UNUSED(ymap);
throw_no_cuda();
#else
projector_.setCameraParams(K, R);
@ -276,12 +276,12 @@ Point cv::detail::CylindricalWarperGpu::warp(const cuda::GpuMat & src, InputArra
cuda::GpuMat & dst)
{
#ifndef HAVE_OPENCV_CUDAWARPING
(void)src;
(void)K;
(void)R;
(void)interp_mode;
(void)border_mode;
(void)dst;
CV_UNUSED(src);
CV_UNUSED(K);
CV_UNUSED(R);
CV_UNUSED(interp_mode);
CV_UNUSED(border_mode);
CV_UNUSED(dst);
throw_no_cuda();
#else
Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_);

@ -84,14 +84,14 @@ Ptr<FrameSource> cv::superres::createFrameSource_Empty()
Ptr<FrameSource> cv::superres::createFrameSource_Video(const String& fileName)
{
(void) fileName;
CV_UNUSED(fileName);
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<FrameSource>();
}
Ptr<FrameSource> cv::superres::createFrameSource_Camera(int deviceId)
{
(void) deviceId;
CV_UNUSED(deviceId);
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<FrameSource>();
}

@ -3913,7 +3913,7 @@ Result HandleSehExceptionsInMethodIfSupported(
return static_cast<Result>(0);
}
#else
(void)location;
CV_UNUSED(location);
return (object->*method)();
#endif // GTEST_HAS_SEH
}

@ -64,22 +64,22 @@ CV_EXPORTS @interface CvAbstractCamera : NSObject
@property (nonatomic, strong) UIView* parentView;
- (void)start;
- (void)stop;
- (void)switchCameras;
- CV_UNUSED(start);
- CV_UNUSED(stop);
- CV_UNUSED(switchCameras);
- (id)initWithParentView:(UIView*)parent;
- (void)createCaptureOutput;
- (void)createVideoPreviewLayer;
- (void)updateOrientation;
- CV_UNUSED(createCaptureOutput);
- CV_UNUSED(createVideoPreviewLayer);
- CV_UNUSED(updateOrientation);
- (void)lockFocus;
- (void)unlockFocus;
- (void)lockExposure;
- (void)unlockExposure;
- (void)lockBalance;
- (void)unlockBalance;
- CV_UNUSED(lockFocus);
- CV_UNUSED(unlockFocus);
- CV_UNUSED(lockExposure);
- CV_UNUSED(unlockExposure);
- CV_UNUSED(lockBalance);
- CV_UNUSED(unlockBalance);
@end
@ -117,8 +117,8 @@ CV_EXPORTS @interface CvVideoCamera : CvAbstractCamera<AVCaptureVideoDataOutputS
@property (nonatomic, strong) AVAssetWriter* recordAssetWriter;
- (void)adjustLayoutToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation;
- (void)layoutPreviewLayer;
- (void)saveVideo;
- CV_UNUSED(layoutPreviewLayer);
- CV_UNUSED(saveVideo);
- (NSURL *)videoFileURL;
- (NSString *)videoFileString;
@ -143,7 +143,7 @@ CV_EXPORTS @interface CvPhotoCamera : CvAbstractCamera
@property (nonatomic, weak) id<CvPhotoCameraDelegate> delegate;
- (void)takePicture;
- CV_UNUSED(takePicture);
@end

@ -758,7 +758,7 @@ static void ffmpeg_log_callback(void *ptr, int level, const char *fmt, va_list v
{
static bool skip_header = false;
static int prev_level = -1;
(void)ptr;
CV_UNUSED(ptr);
if (!skip_header || level != prev_level) printf("[OPENCV:FFMPEG:%02d] ", level);
vprintf(fmt, vargs);
size_t fmt_len = strlen(fmt);

Loading…
Cancel
Save