|
|
|
@ -1,3 +1,28 @@ |
|
|
|
|
''' |
|
|
|
|
The sample demonstrates how to train Random Trees classifier |
|
|
|
|
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset. |
|
|
|
|
|
|
|
|
|
We use the sample database letter-recognition.data |
|
|
|
|
from UCI Repository, here is the link: |
|
|
|
|
|
|
|
|
|
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). |
|
|
|
|
UCI Repository of machine learning databases |
|
|
|
|
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. |
|
|
|
|
Irvine, CA: University of California, Department of Information and Computer Science. |
|
|
|
|
|
|
|
|
|
The dataset consists of 20000 feature vectors along with the |
|
|
|
|
responses - capital latin letters A..Z. |
|
|
|
|
The first 10000 samples are used for training |
|
|
|
|
and the remaining 10000 - to test the classifier. |
|
|
|
|
====================================================== |
|
|
|
|
USAGE: |
|
|
|
|
letter_recog.py [--model <model>] |
|
|
|
|
[--data <data fn>] |
|
|
|
|
[--load <model fn>] [--save <model fn>] |
|
|
|
|
|
|
|
|
|
Models: RTrees, KNearest, Boost, SVM, MLP |
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
import cv2 |
|
|
|
|
|
|
|
|
@ -77,7 +102,6 @@ class Boost(LetterStatModel): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SVM(LetterStatModel): |
|
|
|
|
train_ratio = 0.1 |
|
|
|
|
def __init__(self): |
|
|
|
|
self.model = cv2.SVM() |
|
|
|
|
|
|
|
|
@ -118,12 +142,11 @@ if __name__ == '__main__': |
|
|
|
|
import getopt |
|
|
|
|
import sys |
|
|
|
|
|
|
|
|
|
print __doc__ |
|
|
|
|
|
|
|
|
|
models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes |
|
|
|
|
models = dict( [(cls.__name__.lower(), cls) for cls in models] ) |
|
|
|
|
|
|
|
|
|
print 'USAGE: letter_recog.py [--model <model>] [--data <data fn>] [--load <model fn>] [--save <model fn>]' |
|
|
|
|
print 'Models: ', ', '.join(models) |
|
|
|
|
print |
|
|
|
|
|
|
|
|
|
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save=']) |
|
|
|
|
args = dict(args) |
|
|
|
|