mirror of https://github.com/opencv/opencv.git
parent
b529b37d06
commit
a2f0963d66
3 changed files with 330 additions and 10 deletions
@ -0,0 +1,201 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
/****************************************************************************************\
|
||||
* Stochastic Gradient Descent SVM Classifier * |
||||
\****************************************************************************************/ |
||||
|
||||
namespace cv { |
||||
namespace ml { |
||||
|
||||
SVMSGD::SVMSGD(float lambda, float learnRate, uint nIterations){ |
||||
|
||||
// Initialize with random seed
|
||||
_randomNumber = 1; |
||||
|
||||
// Initialize constants
|
||||
_slidingWindowSize = 0; |
||||
_nFeatures = 0; |
||||
_predictSlidingWindowSize = 1; |
||||
|
||||
// Initialize sliderCounter at index 0
|
||||
_sliderCounter = 0; |
||||
|
||||
// Parameters for learning
|
||||
_lambda = lambda; // regularization
|
||||
_learnRate = learnRate; // learning rate (ideally should be large at beginning and decay each iteration)
|
||||
_nIterations = nIterations; // number of training iterations
|
||||
|
||||
// True only in the first predict iteration
|
||||
_initPredict = true; |
||||
|
||||
// Online update flag
|
||||
_onlineUpdate = false; |
||||
} |
||||
|
||||
SVMSGD::SVMSGD(uint updateFrequency, float learnRateDecay, float lambda, float learnRate, uint nIterations){ |
||||
|
||||
// Initialize with random seed
|
||||
_randomNumber = 1; |
||||
|
||||
// Initialize constants
|
||||
_slidingWindowSize = 0; |
||||
_nFeatures = 0; |
||||
_predictSlidingWindowSize = updateFrequency; |
||||
|
||||
// Initialize sliderCounter at index 0
|
||||
_sliderCounter = 0; |
||||
|
||||
// Parameters for learning
|
||||
_lambda = lambda; // regularization
|
||||
_learnRate = learnRate; // learning rate (ideally should be large at beginning and decay each iteration)
|
||||
_nIterations = nIterations; // number of training iterations
|
||||
|
||||
// True only in the first predict iteration
|
||||
_initPredict = true; |
||||
|
||||
// Online update flag
|
||||
_onlineUpdate = true; |
||||
|
||||
// Learn rate decay: _learnRate = _learnRate * _learnDecay
|
||||
_learnRateDecay = learnRateDecay; |
||||
} |
||||
|
||||
SVMSGD::~SVMSGD(){ |
||||
|
||||
} |
||||
|
||||
SVMSGD* SVMSGD::clone() const{ |
||||
return new SVMSGD(*this); |
||||
} |
||||
|
||||
void SVMSGD::train(cv::Mat trainFeatures, cv::Mat labels){ |
||||
|
||||
// Initialize _nFeatures
|
||||
_slidingWindowSize = trainFeatures.rows; |
||||
_nFeatures = trainFeatures.cols; |
||||
|
||||
float innerProduct; |
||||
// Initialize weights vector with zeros
|
||||
if (_weights.size()==0){ |
||||
_weights.reserve(_nFeatures); |
||||
for (uint feat = 0; feat < _nFeatures; ++feat){ |
||||
_weights.push_back(0.0); |
||||
} |
||||
} |
||||
|
||||
// Stochastic gradient descent SVM
|
||||
for (uint iter = 0; iter < _nIterations; ++iter){ |
||||
generateRandomIndex(); |
||||
innerProduct = calcInnerProduct(trainFeatures.ptr<float>(_randomIndex)); |
||||
int label = (labels.at<int>(_randomIndex,0) > 0) ? 1 : -1; // ensure that labels are -1 or 1
|
||||
updateWeights(innerProduct, trainFeatures.ptr<float>(_randomIndex), label ); |
||||
} |
||||
} |
||||
|
||||
float SVMSGD::predict(cv::Mat newFeature){ |
||||
float innerProduct; |
||||
|
||||
if (_initPredict){ |
||||
_nFeatures = newFeature.cols; |
||||
_slidingWindowSize = _predictSlidingWindowSize; |
||||
_featuresSlider = cv::Mat::zeros(_slidingWindowSize, _nFeatures, CV_32F); |
||||
_initPredict = false; |
||||
_labelSlider = new float[_predictSlidingWindowSize](); |
||||
_learnRate = _learnRate * _learnRateDecay; |
||||
} |
||||
|
||||
innerProduct = calcInnerProduct(newFeature.ptr<float>(0)); |
||||
|
||||
// Resultant label (-1 or 1)
|
||||
int label = (innerProduct>=0) ? 1 : -1; |
||||
|
||||
if (_onlineUpdate){ |
||||
// Update the featuresSlider with newFeature and _labelSlider with label
|
||||
newFeature.row(0).copyTo(_featuresSlider.row(_sliderCounter)); |
||||
_labelSlider[_sliderCounter] = float(label); |
||||
|
||||
// Update weights with a random index
|
||||
if (_sliderCounter == _slidingWindowSize-1){ |
||||
generateRandomIndex(); |
||||
updateWeights(innerProduct, _featuresSlider.ptr<float>(_randomIndex), int(_labelSlider[_randomIndex]) ); |
||||
} |
||||
|
||||
// _sliderCounter++ if < _slidingWindowSize
|
||||
_sliderCounter = (_sliderCounter == _slidingWindowSize-1) ? 0 : (_sliderCounter+1); |
||||
} |
||||
|
||||
return float(label); |
||||
} |
||||
|
||||
void SVMSGD::generateRandomIndex(){ |
||||
// Choose random sample, using Mikolov's fast almost-uniform random number
|
||||
_randomNumber = _randomNumber * (unsigned long long) 25214903917 + 11; |
||||
_randomIndex = uint(_randomNumber % (unsigned long long) _slidingWindowSize); |
||||
} |
||||
|
||||
float SVMSGD::calcInnerProduct(float *rowDataPointer){ |
||||
float innerProduct = 0; |
||||
for (uint feat = 0; feat < _nFeatures; ++feat){ |
||||
innerProduct += _weights[feat] * rowDataPointer[feat]; |
||||
} |
||||
return innerProduct; |
||||
} |
||||
|
||||
void SVMSGD::updateWeights(float innerProduct, float *rowDataPointer, int label){ |
||||
if (label * innerProduct > 1) { |
||||
// Not a support vector, only apply weight decay
|
||||
for (uint feat = 0; feat < _nFeatures; feat++) { |
||||
_weights[feat] -= _learnRate * _lambda * _weights[feat]; |
||||
} |
||||
} else { |
||||
// It's a support vector, add it to the weights
|
||||
for (uint feat = 0; feat < _nFeatures; feat++) { |
||||
_weights[feat] -= _learnRate * (_lambda * _weights[feat] - label * rowDataPointer[feat]); |
||||
} |
||||
} |
||||
} |
||||
|
||||
} |
||||
} |
Loading…
Reference in new issue