|
|
|
@ -1108,6 +1108,9 @@ TEST_P(Layer_Test_Convolution_DLDT, Accuracy) |
|
|
|
|
const Backend backendId = get<0>(GetParam()); |
|
|
|
|
const Target targetId = get<1>(GetParam()); |
|
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
|
|
|
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
|
|
|
throw SkipTestException("No support for async forward"); |
|
|
|
|
|
|
|
|
@ -1118,9 +1121,8 @@ TEST_P(Layer_Test_Convolution_DLDT, Accuracy) |
|
|
|
|
else |
|
|
|
|
FAIL() << "Unknown backendId"; |
|
|
|
|
|
|
|
|
|
std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : ""; |
|
|
|
|
Net netDefault = readNet(_tf("layer_convolution.caffemodel"), _tf("layer_convolution.prototxt")); |
|
|
|
|
Net net = readNet(_tf("layer_convolution" + suffix + ".xml"), _tf("layer_convolution" + suffix + ".bin")); |
|
|
|
|
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin")); |
|
|
|
|
|
|
|
|
|
Mat inp = blobFromNPY(_tf("blob.npy")); |
|
|
|
|
|
|
|
|
@ -1140,7 +1142,10 @@ TEST_P(Layer_Test_Convolution_DLDT, Accuracy) |
|
|
|
|
|
|
|
|
|
std::vector<int> outLayers = net.getUnconnectedOutLayers(); |
|
|
|
|
ASSERT_EQ(net.getLayer(outLayers[0])->name, "output"); |
|
|
|
|
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution"); |
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
|
|
|
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Convolution"); |
|
|
|
|
else |
|
|
|
|
ASSERT_EQ(net.getLayer(outLayers[0])->type, "Add"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8) |
|
|
|
@ -1148,6 +1153,9 @@ TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8) |
|
|
|
|
const Backend backendId = get<0>(GetParam()); |
|
|
|
|
const Target targetId = get<1>(GetParam()); |
|
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
|
|
|
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
|
|
|
throw SkipTestException("No support for async forward"); |
|
|
|
|
|
|
|
|
@ -1164,12 +1172,10 @@ TEST_P(Layer_Test_Convolution_DLDT, setInput_uint8) |
|
|
|
|
randu(inputs[0], 0, 255); |
|
|
|
|
inputs[0].convertTo(inputs[1], CV_32F); |
|
|
|
|
|
|
|
|
|
std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : ""; |
|
|
|
|
|
|
|
|
|
Mat outs[2]; |
|
|
|
|
for (int i = 0; i < 2; ++i) |
|
|
|
|
{ |
|
|
|
|
Net net = readNet(_tf("layer_convolution" + suffix + ".xml"), _tf("layer_convolution" + suffix + ".bin")); |
|
|
|
|
Net net = readNet(_tf("layer_convolution.xml"), _tf("layer_convolution.bin")); |
|
|
|
|
net.setPreferableBackend(backendId); |
|
|
|
|
net.setPreferableTarget(targetId); |
|
|
|
|
net.setInput(inputs[i]); |
|
|
|
@ -1185,6 +1191,9 @@ TEST_P(Layer_Test_Convolution_DLDT, multithreading) |
|
|
|
|
const Backend backendId = get<0>(GetParam()); |
|
|
|
|
const Target targetId = get<1>(GetParam()); |
|
|
|
|
|
|
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
|
|
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
|
|
|
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
|
|
|
throw SkipTestException("No support for async forward"); |
|
|
|
|
|
|
|
|
@ -1195,9 +1204,8 @@ TEST_P(Layer_Test_Convolution_DLDT, multithreading) |
|
|
|
|
else |
|
|
|
|
FAIL() << "Unknown backendId"; |
|
|
|
|
|
|
|
|
|
std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : ""; |
|
|
|
|
std::string xmlPath = _tf("layer_convolution" + suffix + ".xml"); |
|
|
|
|
std::string binPath = _tf("layer_convolution" + suffix + ".bin"); |
|
|
|
|
std::string xmlPath = _tf("layer_convolution.xml"); |
|
|
|
|
std::string binPath = _tf("layer_convolution.bin"); |
|
|
|
|
Net firstNet = readNet(xmlPath, binPath); |
|
|
|
|
Net secondNet = readNet(xmlPath, binPath); |
|
|
|
|
Mat inp = blobFromNPY(_tf("blob.npy")); |
|
|
|
@ -1256,8 +1264,7 @@ TEST_P(Test_DLDT_two_inputs_3dim, as_IR) |
|
|
|
|
int secondInpType = get<1>(GetParam()); |
|
|
|
|
Target targetId = get<2>(GetParam()); |
|
|
|
|
|
|
|
|
|
std::string suffix = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? "_fp16" : ""; |
|
|
|
|
Net net = readNet(_tf("net_two_inputs" + suffix + ".xml"), _tf("net_two_inputs.bin")); |
|
|
|
|
Net net = readNet(_tf("net_two_inputs.xml"), _tf("net_two_inputs.bin")); |
|
|
|
|
std::vector<int> inpSize = get<3>(GetParam()); |
|
|
|
|
Mat firstInp(3, inpSize.data(), firstInpType); |
|
|
|
|
Mat secondInp(3, inpSize.data(), secondInpType); |
|
|
|
|