Merge pull request #1527 from vpisarev:shape_module
@ -0,0 +1,2 @@ |
||||
set(the_description "Shape descriptors and matchers.") |
||||
ocv_define_module(shape opencv_core opencv_imgproc opencv_video) |
@ -0,0 +1,11 @@ |
||||
EMD-L1 |
||||
====== |
||||
Computes the "minimal work" distance between two weighted point configurations base on the papers "EMD-L1: An efficient and Robust Algorithm |
||||
for comparing histogram-based descriptors", by Haibin Ling and Kazunori Okuda; and "The Earth Mover's Distance is the Mallows Distance: |
||||
Some Insights from Statistics", by Elizaveta Levina and Peter Bickel. |
||||
|
||||
.. ocv:function:: float EMDL1( InputArray signature1, InputArray signature2 ) |
||||
|
||||
:param signature1: First signature, a single column floating-point matrix. Each row is the value of the histogram in each bin. |
||||
|
||||
:param signature2: Second signature of the same format and size as ``signature1``. |
@ -0,0 +1,82 @@ |
||||
Cost Matrix for Histograms Common Interface |
||||
=========================================== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
A common interface is defined to ease the implementation of some algorithms pipelines, such |
||||
as the Shape Context Matching Algorithm. A common class is defined, so any object that implements |
||||
a Cost Matrix builder inherits the |
||||
:ocv:class:`HistogramCostExtractor` interface. |
||||
|
||||
HistogramCostExtractor |
||||
---------------------- |
||||
.. ocv:class:: HistogramCostExtractor : public Algorithm |
||||
|
||||
Abstract base class for histogram cost algorithms. :: |
||||
|
||||
class CV_EXPORTS_W HistogramCostExtractor : public Algorithm |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) = 0; |
||||
|
||||
CV_WRAP virtual void setNDummies(int nDummies) = 0; |
||||
CV_WRAP virtual int getNDummies() const = 0; |
||||
|
||||
CV_WRAP virtual void setDefaultCost(float defaultCost) = 0; |
||||
CV_WRAP virtual float getDefaultCost() const = 0; |
||||
}; |
||||
|
||||
NormHistogramCostExtractor |
||||
-------------------------- |
||||
.. ocv:class:: NormHistogramCostExtractor : public HistogramCostExtractor |
||||
|
||||
A norm based cost extraction. :: |
||||
|
||||
class CV_EXPORTS_W NormHistogramCostExtractor : public HistogramCostExtractor |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setNormFlag(int flag) = 0; |
||||
CV_WRAP virtual int getNormFlag() const = 0; |
||||
}; |
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
||||
createNormHistogramCostExtractor(int flag=cv::DIST_L2, int nDummies=25, float defaultCost=0.2); |
||||
|
||||
EMDHistogramCostExtractor |
||||
------------------------- |
||||
.. ocv:class:: EMDHistogramCostExtractor : public HistogramCostExtractor |
||||
|
||||
An EMD based cost extraction. :: |
||||
|
||||
class CV_EXPORTS_W EMDHistogramCostExtractor : public HistogramCostExtractor |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setNormFlag(int flag) = 0; |
||||
CV_WRAP virtual int getNormFlag() const = 0; |
||||
}; |
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
||||
createEMDHistogramCostExtractor(int flag=cv::DIST_L2, int nDummies=25, float defaultCost=0.2); |
||||
|
||||
ChiHistogramCostExtractor |
||||
------------------------- |
||||
.. ocv:class:: ChiHistogramCostExtractor : public HistogramCostExtractor |
||||
|
||||
An Chi based cost extraction. :: |
||||
|
||||
class CV_EXPORTS_W ChiHistogramCostExtractor : public HistogramCostExtractor |
||||
{}; |
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies=25, float defaultCost=0.2); |
||||
|
||||
EMDL1HistogramCostExtractor |
||||
--------------------------- |
||||
.. ocv:class:: EMDL1HistogramCostExtractor : public HistogramCostExtractor |
||||
|
||||
An EMD-L1 based cost extraction. :: |
||||
|
||||
class CV_EXPORTS_W EMDL1HistogramCostExtractor : public HistogramCostExtractor |
||||
{}; |
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
||||
createEMDL1HistogramCostExtractor(int nDummies=25, float defaultCost=0.2); |
@ -0,0 +1,15 @@ |
||||
********************************** |
||||
shape. Shape Distance and Matching |
||||
********************************** |
||||
|
||||
The module contains algorithms that embed a notion of shape distance. |
||||
These algorithms may be used for shape matching and retrieval, or shape |
||||
comparison. |
||||
|
||||
.. toctree:: |
||||
:maxdepth: 2 |
||||
|
||||
shape_distances |
||||
shape_transformers |
||||
histogram_cost_matrix |
||||
emdL1 |
@ -0,0 +1,231 @@ |
||||
Shape Distance and Common Interfaces |
||||
==================================== |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
Shape Distance algorithms in OpenCV are derivated from a common interface that allows you to |
||||
switch between them in a practical way for solving the same problem with different methods. |
||||
Thus, all objects that implement shape distance measures inherit the |
||||
:ocv:class:`ShapeDistanceExtractor` interface. |
||||
|
||||
|
||||
ShapeDistanceExtractor |
||||
---------------------- |
||||
.. ocv:class:: ShapeDistanceExtractor : public Algorithm |
||||
|
||||
Abstract base class for shape distance algorithms. :: |
||||
|
||||
class CV_EXPORTS_W ShapeDistanceExtractor : public Algorithm |
||||
{ |
||||
public: |
||||
CV_WRAP virtual float computeDistance(InputArray contour1, InputArray contour2) = 0; |
||||
}; |
||||
|
||||
ShapeDistanceExtractor::computeDistance |
||||
--------------------------------------- |
||||
Compute the shape distance between two shapes defined by its contours. |
||||
|
||||
.. ocv:function:: float ShapeDistanceExtractor::computeDistance( InputArray contour1, InputArray contour2 ) |
||||
|
||||
:param contour1: Contour defining first shape. |
||||
|
||||
:param contour2: Contour defining second shape. |
||||
|
||||
ShapeContextDistanceExtractor |
||||
----------------------------- |
||||
.. ocv:class:: ShapeContextDistanceExtractor : public ShapeDistanceExtractor |
||||
|
||||
Implementation of the Shape Context descriptor and matching algorithm proposed by Belongie et al. in |
||||
"Shape Matching and Object Recognition Using Shape Contexts" (PAMI 2002). |
||||
This implementation is packaged in a generic scheme, in order to allow you the implementation of the |
||||
common variations of the original pipeline. :: |
||||
|
||||
class CV_EXPORTS_W ShapeContextDistanceExtractor : public ShapeDistanceExtractor |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setAngularBins(int nAngularBins) = 0; |
||||
CV_WRAP virtual int getAngularBins() const = 0; |
||||
|
||||
CV_WRAP virtual void setRadialBins(int nRadialBins) = 0; |
||||
CV_WRAP virtual int getRadialBins() const = 0; |
||||
|
||||
CV_WRAP virtual void setInnerRadius(float innerRadius) = 0; |
||||
CV_WRAP virtual float getInnerRadius() const = 0; |
||||
|
||||
CV_WRAP virtual void setOuterRadius(float outerRadius) = 0; |
||||
CV_WRAP virtual float getOuterRadius() const = 0; |
||||
|
||||
CV_WRAP virtual void setRotationInvariant(bool rotationInvariant) = 0; |
||||
CV_WRAP virtual bool getRotationInvariant() const = 0; |
||||
|
||||
CV_WRAP virtual void setShapeContextWeight(float shapeContextWeight) = 0; |
||||
CV_WRAP virtual float getShapeContextWeight() const = 0; |
||||
|
||||
CV_WRAP virtual void setImageAppearanceWeight(float imageAppearanceWeight) = 0; |
||||
CV_WRAP virtual float getImageAppearanceWeight() const = 0; |
||||
|
||||
CV_WRAP virtual void setBendingEnergyWeight(float bendingEnergyWeight) = 0; |
||||
CV_WRAP virtual float getBendingEnergyWeight() const = 0; |
||||
|
||||
CV_WRAP virtual void setImages(InputArray image1, InputArray image2) = 0; |
||||
CV_WRAP virtual void getImages(OutputArray image1, OutputArray image2) const = 0; |
||||
|
||||
CV_WRAP virtual void setIterations(int iterations) = 0; |
||||
CV_WRAP virtual int getIterations() const = 0; |
||||
|
||||
CV_WRAP virtual void setCostExtractor(Ptr<HistogramCostExtractor> comparer) = 0; |
||||
CV_WRAP virtual Ptr<HistogramCostExtractor> getCostExtractor() const = 0; |
||||
|
||||
CV_WRAP virtual void setTransformAlgorithm(Ptr<ShapeTransformer> transformer) = 0; |
||||
CV_WRAP virtual Ptr<ShapeTransformer> getTransformAlgorithm() const = 0; |
||||
}; |
||||
|
||||
/* Complete constructor */ |
||||
CV_EXPORTS_W Ptr<ShapeContextDistanceExtractor> |
||||
createShapeContextDistanceExtractor(int nAngularBins=12, int nRadialBins=4, |
||||
float innerRadius=0.2, float outerRadius=2, int iterations=3, |
||||
const Ptr<HistogramCostExtractor> &comparer = createChiHistogramCostExtractor(), |
||||
const Ptr<ShapeTransformer> &transformer = createThinPlateSplineShapeTransformer()); |
||||
|
||||
ShapeContextDistanceExtractor::setAngularBins |
||||
--------------------------------------------- |
||||
Establish the number of angular bins for the Shape Context Descriptor used in the shape matching pipeline. |
||||
|
||||
.. ocv:function:: void setAngularBins( int nAngularBins ) |
||||
|
||||
:param nAngularBins: The number of angular bins in the shape context descriptor. |
||||
|
||||
ShapeContextDistanceExtractor::setRadialBins |
||||
-------------------------------------------- |
||||
Establish the number of radial bins for the Shape Context Descriptor used in the shape matching pipeline. |
||||
|
||||
.. ocv:function:: void setRadialBins( int nRadialBins ) |
||||
|
||||
:param nRadialBins: The number of radial bins in the shape context descriptor. |
||||
|
||||
ShapeContextDistanceExtractor::setInnerRadius |
||||
--------------------------------------------- |
||||
Set the inner radius of the shape context descriptor. |
||||
|
||||
.. ocv:function:: void setInnerRadius(float innerRadius) |
||||
|
||||
:param innerRadius: The value of the inner radius. |
||||
|
||||
ShapeContextDistanceExtractor::setOuterRadius |
||||
--------------------------------------------- |
||||
Set the outer radius of the shape context descriptor. |
||||
|
||||
.. ocv:function:: void setOuterRadius(float outerRadius) |
||||
|
||||
:param outerRadius: The value of the outer radius. |
||||
|
||||
ShapeContextDistanceExtractor::setShapeContextWeight |
||||
---------------------------------------------------- |
||||
Set the weight of the shape context distance in the final value of the shape distance. |
||||
The shape context distance between two shapes is defined as the symmetric sum of shape |
||||
context matching costs over best matching points. |
||||
The final value of the shape distance is a user-defined linear combination of the shape |
||||
context distance, an image appearance distance, and a bending energy. |
||||
|
||||
.. ocv:function:: void setShapeContextWeight( float shapeContextWeight ) |
||||
|
||||
:param shapeContextWeight: The weight of the shape context distance in the final distance value. |
||||
|
||||
ShapeContextDistanceExtractor::setImageAppearanceWeight |
||||
------------------------------------------------------- |
||||
Set the weight of the Image Appearance cost in the final value of the shape distance. |
||||
The image appearance cost is defined as the sum of squared brightness differences in |
||||
Gaussian windows around corresponding image points. |
||||
The final value of the shape distance is a user-defined linear combination of the shape |
||||
context distance, an image appearance distance, and a bending energy. |
||||
If this value is set to a number different from 0, is mandatory to set the images that |
||||
correspond to each shape. |
||||
|
||||
.. ocv:function:: void setImageAppearanceWeight( float imageAppearanceWeight ) |
||||
|
||||
:param imageAppearanceWeight: The weight of the appearance cost in the final distance value. |
||||
|
||||
ShapeContextDistanceExtractor::setBendingEnergyWeight |
||||
----------------------------------------------------- |
||||
Set the weight of the Bending Energy in the final value of the shape distance. |
||||
The bending energy definition depends on what transformation is being used to align the |
||||
shapes. |
||||
The final value of the shape distance is a user-defined linear combination of the shape |
||||
context distance, an image appearance distance, and a bending energy. |
||||
|
||||
.. ocv:function:: void setBendingEnergyWeight( float bendingEnergyWeight ) |
||||
|
||||
:param bendingEnergyWeight: The weight of the Bending Energy in the final distance value. |
||||
|
||||
ShapeContextDistanceExtractor::setImages |
||||
---------------------------------------- |
||||
Set the images that correspond to each shape. This images are used in the calculation of the |
||||
Image Appearance cost. |
||||
|
||||
.. ocv:function:: void setImages( InputArray image1, InputArray image2 ) |
||||
|
||||
:param image1: Image corresponding to the shape defined by ``contours1``. |
||||
|
||||
:param image2: Image corresponding to the shape defined by ``contours2``. |
||||
|
||||
ShapeContextDistanceExtractor::setCostExtractor |
||||
----------------------------------------------- |
||||
Set the algorithm used for building the shape context descriptor cost matrix. |
||||
|
||||
.. ocv:function:: void setCostExtractor( Ptr<HistogramCostExtractor> comparer ) |
||||
|
||||
:param comparer: Smart pointer to a HistogramCostExtractor, an algorithm that defines the cost matrix between descriptors. |
||||
|
||||
ShapeContextDistanceExtractor::setStdDev |
||||
---------------------------------------- |
||||
Set the value of the standard deviation for the Gaussian window for the image appearance cost. |
||||
|
||||
.. ocv:function:: void setStdDev( float sigma ) |
||||
|
||||
:param sigma: Standard Deviation. |
||||
|
||||
ShapeContextDistanceExtractor::setTransformAlgorithm |
||||
---------------------------------------------------- |
||||
Set the algorithm used for aligning the shapes. |
||||
|
||||
.. ocv:function:: void setTransformAlgorithm( Ptr<ShapeTransformer> transformer ) |
||||
|
||||
:param comparer: Smart pointer to a ShapeTransformer, an algorithm that defines the aligning transformation. |
||||
|
||||
HausdorffDistanceExtractor |
||||
-------------------------- |
||||
.. ocv:class:: HausdorffDistanceExtractor : public ShapeDistanceExtractor |
||||
|
||||
A simple Hausdorff distance measure between shapes defined by contours, |
||||
according to the paper "Comparing Images using the Hausdorff distance." by |
||||
D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. (PAMI 1993). :: |
||||
|
||||
class CV_EXPORTS_W HausdorffDistanceExtractor : public ShapeDistanceExtractor |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setDistanceFlag(int distanceFlag) = 0; |
||||
CV_WRAP virtual int getDistanceFlag() const = 0; |
||||
|
||||
CV_WRAP virtual void setRankProportion(float rankProportion) = 0; |
||||
CV_WRAP virtual float getRankProportion() const = 0; |
||||
}; |
||||
|
||||
/* Constructor */ |
||||
CV_EXPORTS_W Ptr<HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag=cv::NORM_L2, float rankProp=0.6); |
||||
|
||||
HausdorffDistanceExtractor::setDistanceFlag |
||||
------------------------------------------- |
||||
Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm. |
||||
|
||||
.. ocv:function:: void setDistanceFlag( int distanceFlag ) |
||||
|
||||
:param distanceFlag: Flag indicating which norm is used to compute the Hausdorff distance (NORM_L1, NORM_L2). |
||||
|
||||
HausdorffDistanceExtractor::setRankProportion |
||||
--------------------------------------------- |
||||
This method sets the rank proportion (or fractional value) that establish the Kth ranked value of the |
||||
partial Hausdorff distance. Experimentally had been shown that 0.6 is a good value to compare shapes. |
||||
|
||||
.. ocv:function:: void setRankProportion( float rankProportion ) |
||||
|
||||
:param rankProportion: fractional value (between 0 and 1). |
@ -0,0 +1,108 @@ |
||||
Shape Transformers and Interfaces |
||||
================================= |
||||
|
||||
.. highlight:: cpp |
||||
|
||||
A virtual interface that ease the use of transforming algorithms in some pipelines, such as |
||||
the Shape Context Matching Algorithm. Thus, all objects that implement shape transformation |
||||
techniques inherit the |
||||
:ocv:class:`ShapeTransformer` interface. |
||||
|
||||
ShapeTransformer |
||||
---------------- |
||||
.. ocv:class:: ShapeTransformer : public Algorithm |
||||
|
||||
Abstract base class for shape transformation algorithms. :: |
||||
|
||||
class CV_EXPORTS_W ShapeTransformer : public Algorithm |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, |
||||
std::vector<DMatch>& matches) = 0; |
||||
|
||||
CV_WRAP virtual float applyTransformation(InputArray input, OutputArray output=noArray()) = 0; |
||||
|
||||
CV_WRAP virtual void warpImage(InputArray transformingImage, OutputArray output, |
||||
int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, |
||||
const Scalar& borderValue=Scalar()) const = 0; |
||||
}; |
||||
|
||||
ShapeTransformer::estimateTransformation |
||||
---------------------------------------- |
||||
Estimate the transformation parameters of the current transformer algorithm, based on point matches. |
||||
|
||||
.. ocv:function:: void estimateTransformation( InputArray transformingShape, InputArray targetShape, std::vector<DMatch>& matches ) |
||||
|
||||
:param transformingShape: Contour defining first shape. |
||||
|
||||
:param targetShape: Contour defining second shape (Target). |
||||
|
||||
:param matches: Standard vector of Matches between points. |
||||
|
||||
ShapeTransformer::applyTransformation |
||||
------------------------------------- |
||||
Apply a transformation, given a pre-estimated transformation parameters. |
||||
|
||||
.. ocv:function:: float applyTransformation( InputArray input, OutputArray output=noArray() ) |
||||
|
||||
:param input: Contour (set of points) to apply the transformation. |
||||
|
||||
:param output: Output contour. |
||||
|
||||
ShapeTransformer::warpImage |
||||
--------------------------- |
||||
Apply a transformation, given a pre-estimated transformation parameters, to an Image. |
||||
|
||||
.. ocv:function:: void warpImage( InputArray transformingImage, OutputArray output, int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar& borderValue=Scalar() ) |
||||
|
||||
:param transformingImage: Input image. |
||||
|
||||
:param output: Output image. |
||||
|
||||
:param flags: Image interpolation method. |
||||
|
||||
:param borderMode: border style. |
||||
|
||||
:param borderValue: border value. |
||||
|
||||
ThinPlateSplineShapeTransformer |
||||
------------------------------- |
||||
.. ocv:class:: ThinPlateSplineShapeTransformer : public Algorithm |
||||
|
||||
Definition of the transformation ocupied in the paper "Principal Warps: Thin-Plate Splines and Decomposition |
||||
of Deformations", by F.L. Bookstein (PAMI 1989). :: |
||||
|
||||
class CV_EXPORTS_W ThinPlateSplineShapeTransformer : public ShapeTransformer |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setRegularizationParameter(double beta) = 0; |
||||
CV_WRAP virtual double getRegularizationParameter() const = 0; |
||||
}; |
||||
|
||||
/* Complete constructor */ |
||||
CV_EXPORTS_W Ptr<ThinPlateSplineShapeTransformer> |
||||
createThinPlateSplineShapeTransformer(double regularizationParameter=0); |
||||
|
||||
ThinPlateSplineShapeTransformer::setRegularizationParameter |
||||
----------------------------------------------------------- |
||||
Set the regularization parameter for relaxing the exact interpolation requirements of the TPS algorithm. |
||||
|
||||
.. ocv:function:: void setRegularizationParameter( double beta ) |
||||
|
||||
:param beta: value of the regularization parameter. |
||||
|
||||
AffineTransformer |
||||
----------------- |
||||
.. ocv:class:: AffineTransformer : public Algorithm |
||||
|
||||
Wrapper class for the OpenCV Affine Transformation algorithm. :: |
||||
|
||||
class CV_EXPORTS_W AffineTransformer : public ShapeTransformer |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setFullAffine(bool fullAffine) = 0; |
||||
CV_WRAP virtual bool getFullAffine() const = 0; |
||||
}; |
||||
|
||||
/* Complete constructor */ |
||||
CV_EXPORTS_W Ptr<AffineTransformer> createAffineTransformer(bool fullAffine); |
@ -0,0 +1,58 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_SHAPE_HPP__ |
||||
#define __OPENCV_SHAPE_HPP__ |
||||
|
||||
#include "opencv2/shape/emdL1.hpp" |
||||
#include "opencv2/shape/shape_transformer.hpp" |
||||
#include "opencv2/shape/hist_cost.hpp" |
||||
#include "opencv2/shape/shape_distance.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
CV_EXPORTS bool initModule_shape(); |
||||
} |
||||
|
||||
#endif |
||||
|
||||
/* End of file. */ |
@ -0,0 +1,58 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_EMD_L1_HPP__ |
||||
#define __OPENCV_EMD_L1_HPP__ |
||||
|
||||
#include "opencv2/core.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
/****************************************************************************************\
|
||||
* EMDL1 Function * |
||||
\****************************************************************************************/ |
||||
|
||||
CV_EXPORTS float EMDL1(InputArray signature1, InputArray signature2); |
||||
|
||||
}//namespace cv
|
||||
|
||||
#endif |
@ -0,0 +1,103 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_HIST_COST_HPP__ |
||||
#define __OPENCV_HIST_COST_HPP__ |
||||
|
||||
#include "opencv2/imgproc.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*!
|
||||
* The base class for HistogramCostExtractor. |
||||
*/ |
||||
class CV_EXPORTS_W HistogramCostExtractor : public Algorithm |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix) = 0; |
||||
|
||||
CV_WRAP virtual void setNDummies(int nDummies) = 0; |
||||
CV_WRAP virtual int getNDummies() const = 0; |
||||
|
||||
CV_WRAP virtual void setDefaultCost(float defaultCost) = 0; |
||||
CV_WRAP virtual float getDefaultCost() const = 0; |
||||
}; |
||||
|
||||
/*! */ |
||||
class CV_EXPORTS_W NormHistogramCostExtractor : public HistogramCostExtractor |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setNormFlag(int flag) = 0; |
||||
CV_WRAP virtual int getNormFlag() const = 0; |
||||
}; |
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
||||
createNormHistogramCostExtractor(int flag=DIST_L2, int nDummies=25, float defaultCost=0.2); |
||||
|
||||
/*! */ |
||||
class CV_EXPORTS_W EMDHistogramCostExtractor : public HistogramCostExtractor |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setNormFlag(int flag) = 0; |
||||
CV_WRAP virtual int getNormFlag() const = 0; |
||||
}; |
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
||||
createEMDHistogramCostExtractor(int flag=DIST_L2, int nDummies=25, float defaultCost=0.2); |
||||
|
||||
/*! */ |
||||
class CV_EXPORTS_W ChiHistogramCostExtractor : public HistogramCostExtractor |
||||
{}; |
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies=25, float defaultCost=0.2); |
||||
|
||||
/*! */ |
||||
class CV_EXPORTS_W EMDL1HistogramCostExtractor : public HistogramCostExtractor |
||||
{}; |
||||
|
||||
CV_EXPORTS_W Ptr<HistogramCostExtractor> |
||||
createEMDL1HistogramCostExtractor(int nDummies=25, float defaultCost=0.2); |
||||
|
||||
} // cv
|
||||
#endif |
@ -0,0 +1,48 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef __OPENCV_BUILD |
||||
#error this is a compatibility header which should not be used inside the OpenCV library |
||||
#endif |
||||
|
||||
#include "opencv2/shape.hpp" |
@ -0,0 +1,143 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_SHAPE_SHAPE_DISTANCE_HPP__ |
||||
#define __OPENCV_SHAPE_SHAPE_DISTANCE_HPP__ |
||||
#include "opencv2/core.hpp" |
||||
#include "opencv2/shape/hist_cost.hpp" |
||||
#include "opencv2/shape/shape_transformer.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*!
|
||||
* The base class for ShapeDistanceExtractor. |
||||
* This is just to define the common interface for |
||||
* shape comparisson techniques. |
||||
*/ |
||||
class CV_EXPORTS_W ShapeDistanceExtractor : public Algorithm |
||||
{ |
||||
public: |
||||
CV_WRAP virtual float computeDistance(InputArray contour1, InputArray contour2) = 0; |
||||
}; |
||||
|
||||
/***********************************************************************************/ |
||||
/***********************************************************************************/ |
||||
/***********************************************************************************/ |
||||
/*!
|
||||
* Shape Context implementation. |
||||
* The SCD class implements SCD algorithm proposed by Belongie et al.in |
||||
* "Shape Matching and Object Recognition Using Shape Contexts". |
||||
* Implemented by Juan M. Perez for the GSOC 2013. |
||||
*/ |
||||
class CV_EXPORTS_W ShapeContextDistanceExtractor : public ShapeDistanceExtractor |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setAngularBins(int nAngularBins) = 0; |
||||
CV_WRAP virtual int getAngularBins() const = 0; |
||||
|
||||
CV_WRAP virtual void setRadialBins(int nRadialBins) = 0; |
||||
CV_WRAP virtual int getRadialBins() const = 0; |
||||
|
||||
CV_WRAP virtual void setInnerRadius(float innerRadius) = 0; |
||||
CV_WRAP virtual float getInnerRadius() const = 0; |
||||
|
||||
CV_WRAP virtual void setOuterRadius(float outerRadius) = 0; |
||||
CV_WRAP virtual float getOuterRadius() const = 0; |
||||
|
||||
CV_WRAP virtual void setRotationInvariant(bool rotationInvariant) = 0; |
||||
CV_WRAP virtual bool getRotationInvariant() const = 0; |
||||
|
||||
CV_WRAP virtual void setShapeContextWeight(float shapeContextWeight) = 0; |
||||
CV_WRAP virtual float getShapeContextWeight() const = 0; |
||||
|
||||
CV_WRAP virtual void setImageAppearanceWeight(float imageAppearanceWeight) = 0; |
||||
CV_WRAP virtual float getImageAppearanceWeight() const = 0; |
||||
|
||||
CV_WRAP virtual void setBendingEnergyWeight(float bendingEnergyWeight) = 0; |
||||
CV_WRAP virtual float getBendingEnergyWeight() const = 0; |
||||
|
||||
CV_WRAP virtual void setImages(InputArray image1, InputArray image2) = 0; |
||||
CV_WRAP virtual void getImages(OutputArray image1, OutputArray image2) const = 0; |
||||
|
||||
CV_WRAP virtual void setIterations(int iterations) = 0; |
||||
CV_WRAP virtual int getIterations() const = 0; |
||||
|
||||
CV_WRAP virtual void setCostExtractor(Ptr<HistogramCostExtractor> comparer) = 0; |
||||
CV_WRAP virtual Ptr<HistogramCostExtractor> getCostExtractor() const = 0; |
||||
|
||||
CV_WRAP virtual void setStdDev(float sigma) = 0; |
||||
CV_WRAP virtual float getStdDev() const = 0; |
||||
|
||||
CV_WRAP virtual void setTransformAlgorithm(Ptr<ShapeTransformer> transformer) = 0; |
||||
CV_WRAP virtual Ptr<ShapeTransformer> getTransformAlgorithm() const = 0; |
||||
}; |
||||
|
||||
/* Complete constructor */ |
||||
CV_EXPORTS_W Ptr<ShapeContextDistanceExtractor> |
||||
createShapeContextDistanceExtractor(int nAngularBins=12, int nRadialBins=4, |
||||
float innerRadius=0.2, float outerRadius=2, int iterations=3, |
||||
const Ptr<HistogramCostExtractor> &comparer = createChiHistogramCostExtractor(), |
||||
const Ptr<ShapeTransformer> &transformer = createThinPlateSplineShapeTransformer()); |
||||
|
||||
/***********************************************************************************/ |
||||
/***********************************************************************************/ |
||||
/***********************************************************************************/ |
||||
/*!
|
||||
* Hausdorff distace implementation based on |
||||
*/ |
||||
class CV_EXPORTS_W HausdorffDistanceExtractor : public ShapeDistanceExtractor |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setDistanceFlag(int distanceFlag) = 0; |
||||
CV_WRAP virtual int getDistanceFlag() const = 0; |
||||
|
||||
CV_WRAP virtual void setRankProportion(float rankProportion) = 0; |
||||
CV_WRAP virtual float getRankProportion() const = 0; |
||||
}; |
||||
|
||||
/* Constructor */ |
||||
CV_EXPORTS_W Ptr<HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag=cv::NORM_L2, float rankProp=0.6); |
||||
|
||||
} // cv
|
||||
#endif |
@ -0,0 +1,109 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_SHAPE_SHAPE_TRANSFORM_HPP__ |
||||
#define __OPENCV_SHAPE_SHAPE_TRANSFORM_HPP__ |
||||
#include <vector> |
||||
#include "opencv2/core.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*!
|
||||
* The base class for ShapeTransformer. |
||||
* This is just to define the common interface for |
||||
* shape transformation techniques. |
||||
*/ |
||||
class CV_EXPORTS_W ShapeTransformer : public Algorithm |
||||
{ |
||||
public: |
||||
/* Estimate, Apply Transformation and return Transforming cost*/ |
||||
CV_WRAP virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, |
||||
std::vector<DMatch>& matches) = 0; |
||||
|
||||
CV_WRAP virtual float applyTransformation(InputArray input, OutputArray output=noArray()) = 0; |
||||
|
||||
CV_WRAP virtual void warpImage(InputArray transformingImage, OutputArray output, |
||||
int flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, |
||||
const Scalar& borderValue=Scalar()) const = 0; |
||||
}; |
||||
|
||||
/***********************************************************************************/ |
||||
/***********************************************************************************/ |
||||
/*!
|
||||
* Thin Plate Spline Transformation |
||||
* Implementation of the TPS transformation |
||||
* according to "Principal Warps: Thin-Plate Splines and the |
||||
* Decomposition of Deformations" by Juan Manuel Perez for the GSOC 2013 |
||||
*/ |
||||
|
||||
class CV_EXPORTS_W ThinPlateSplineShapeTransformer : public ShapeTransformer |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setRegularizationParameter(double beta) = 0; |
||||
CV_WRAP virtual double getRegularizationParameter() const = 0; |
||||
}; |
||||
|
||||
/* Complete constructor */ |
||||
CV_EXPORTS_W Ptr<ThinPlateSplineShapeTransformer> |
||||
createThinPlateSplineShapeTransformer(double regularizationParameter=0); |
||||
|
||||
/***********************************************************************************/ |
||||
/***********************************************************************************/ |
||||
/*!
|
||||
* Affine Transformation as a derivated from ShapeTransformer |
||||
*/ |
||||
|
||||
class CV_EXPORTS_W AffineTransformer : public ShapeTransformer |
||||
{ |
||||
public: |
||||
CV_WRAP virtual void setFullAffine(bool fullAffine) = 0; |
||||
CV_WRAP virtual bool getFullAffine() const = 0; |
||||
}; |
||||
|
||||
/* Complete constructor */ |
||||
CV_EXPORTS_W Ptr<AffineTransformer> createAffineTransformer(bool fullAffine); |
||||
|
||||
} // cv
|
||||
#endif |
@ -0,0 +1,266 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
class AffineTransformerImpl : public AffineTransformer |
||||
{ |
||||
public: |
||||
/* Constructors */ |
||||
AffineTransformerImpl() |
||||
{ |
||||
fullAffine = true; |
||||
name_ = "ShapeTransformer.AFF"; |
||||
} |
||||
|
||||
AffineTransformerImpl(bool _fullAffine) |
||||
{ |
||||
fullAffine = _fullAffine; |
||||
name_ = "ShapeTransformer.AFF"; |
||||
} |
||||
|
||||
/* Destructor */ |
||||
~AffineTransformerImpl() |
||||
{ |
||||
} |
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; } |
||||
|
||||
//! the main operator
|
||||
virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches); |
||||
virtual float applyTransformation(InputArray input, OutputArray output=noArray()); |
||||
virtual void warpImage(InputArray transformingImage, OutputArray output, |
||||
int flags, int borderMode, const Scalar& borderValue) const; |
||||
|
||||
//! Setters/Getters
|
||||
virtual void setFullAffine(bool _fullAffine) {fullAffine=_fullAffine;} |
||||
virtual bool getFullAffine() const {return fullAffine;} |
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << name_ |
||||
<< "affine_type" << int(fullAffine); |
||||
} |
||||
|
||||
virtual void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( (String)fn["name"] == name_ ); |
||||
fullAffine = int(fn["affine_type"])?true:false; |
||||
} |
||||
|
||||
private: |
||||
bool fullAffine; |
||||
Mat affineMat; |
||||
float transformCost; |
||||
|
||||
protected: |
||||
String name_; |
||||
}; |
||||
|
||||
void AffineTransformerImpl::warpImage(InputArray transformingImage, OutputArray output, |
||||
int flags, int borderMode, const Scalar& borderValue) const |
||||
{ |
||||
CV_Assert(!affineMat.empty()); |
||||
warpAffine(transformingImage, output, affineMat, transformingImage.getMat().size(), flags, borderMode, borderValue); |
||||
} |
||||
|
||||
|
||||
static Mat _localAffineEstimate(const std::vector<Point2f>& shape1, const std::vector<Point2f>& shape2, |
||||
bool fullAfine) |
||||
{ |
||||
Mat out(2,3,CV_32F); |
||||
int siz=2*shape1.size(); |
||||
|
||||
if (fullAfine) |
||||
{ |
||||
Mat matM(siz, 6, CV_32F); |
||||
Mat matP(siz,1,CV_32F); |
||||
int contPt=0; |
||||
for (int ii=0; ii<siz; ii++) |
||||
{ |
||||
Mat therow = Mat::zeros(1,6,CV_32F); |
||||
if (ii%2==0) |
||||
{ |
||||
therow.at<float>(0,0)=shape1[contPt].x; |
||||
therow.at<float>(0,1)=shape1[contPt].y; |
||||
therow.at<float>(0,2)=1; |
||||
therow.row(0).copyTo(matM.row(ii)); |
||||
matP.at<float>(ii,0) = shape2[contPt].x; |
||||
} |
||||
else |
||||
{ |
||||
therow.at<float>(0,3)=shape1[contPt].x; |
||||
therow.at<float>(0,4)=shape1[contPt].y; |
||||
therow.at<float>(0,5)=1; |
||||
therow.row(0).copyTo(matM.row(ii)); |
||||
matP.at<float>(ii,0) = shape2[contPt].y; |
||||
contPt++; |
||||
} |
||||
} |
||||
Mat sol; |
||||
solve(matM, matP, sol, DECOMP_SVD); |
||||
out = sol.reshape(0,2); |
||||
} |
||||
else |
||||
{ |
||||
Mat matM(siz, 4, CV_32F); |
||||
Mat matP(siz,1,CV_32F); |
||||
int contPt=0; |
||||
for (int ii=0; ii<siz; ii++) |
||||
{ |
||||
Mat therow = Mat::zeros(1,4,CV_32F); |
||||
if (ii%2==0) |
||||
{ |
||||
therow.at<float>(0,0)=shape1[contPt].x; |
||||
therow.at<float>(0,1)=shape1[contPt].y; |
||||
therow.at<float>(0,2)=1; |
||||
therow.row(0).copyTo(matM.row(ii)); |
||||
matP.at<float>(ii,0) = shape2[contPt].x; |
||||
} |
||||
else |
||||
{ |
||||
therow.at<float>(0,0)=-shape1[contPt].y; |
||||
therow.at<float>(0,1)=shape1[contPt].x; |
||||
therow.at<float>(0,3)=1; |
||||
therow.row(0).copyTo(matM.row(ii)); |
||||
matP.at<float>(ii,0) = shape2[contPt].y; |
||||
contPt++; |
||||
} |
||||
} |
||||
Mat sol; |
||||
solve(matM, matP, sol, DECOMP_SVD); |
||||
out.at<float>(0,0)=sol.at<float>(0,0); |
||||
out.at<float>(0,1)=sol.at<float>(1,0); |
||||
out.at<float>(0,2)=sol.at<float>(2,0); |
||||
out.at<float>(1,0)=-sol.at<float>(1,0); |
||||
out.at<float>(1,1)=sol.at<float>(0,0); |
||||
out.at<float>(1,2)=sol.at<float>(3,0); |
||||
} |
||||
return out; |
||||
} |
||||
|
||||
void AffineTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2, std::vector<DMatch>& _matches) |
||||
{ |
||||
Mat pts1 = _pts1.getMat(); |
||||
Mat pts2 = _pts2.getMat(); |
||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0) && (pts2.channels()==2) && (pts2.cols>0)); |
||||
CV_Assert(_matches.size()>1); |
||||
|
||||
if (pts1.type() != CV_32F) |
||||
pts1.convertTo(pts1, CV_32F); |
||||
if (pts2.type() != CV_32F) |
||||
pts2.convertTo(pts2, CV_32F); |
||||
|
||||
// Use only valid matchings //
|
||||
std::vector<DMatch> matches; |
||||
for (size_t i=0; i<_matches.size(); i++) |
||||
{ |
||||
if (_matches[i].queryIdx<pts1.cols && |
||||
_matches[i].trainIdx<pts2.cols) |
||||
{ |
||||
matches.push_back(_matches[i]); |
||||
} |
||||
} |
||||
|
||||
// Organizing the correspondent points in vector style //
|
||||
std::vector<Point2f> shape1; // transforming shape
|
||||
std::vector<Point2f> shape2; // target shape
|
||||
for (size_t i=0; i<matches.size(); i++) |
||||
{ |
||||
Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx); |
||||
shape1.push_back(pt1); |
||||
|
||||
Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx); |
||||
shape2.push_back(pt2); |
||||
} |
||||
|
||||
// estimateRigidTransform //
|
||||
Mat affine; |
||||
estimateRigidTransform(shape1, shape2, fullAffine).convertTo(affine, CV_32F); |
||||
|
||||
if (affine.empty()) |
||||
affine=_localAffineEstimate(shape1, shape2, fullAffine); //In case there is not good solution, just give a LLS based one
|
||||
|
||||
affineMat = affine; |
||||
} |
||||
|
||||
float AffineTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts) |
||||
{ |
||||
Mat pts1 = inPts.getMat(); |
||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0)); |
||||
|
||||
//Apply transformation in the complete set of points
|
||||
Mat fAffine; |
||||
transform(pts1, fAffine, affineMat); |
||||
|
||||
// Ensambling output //
|
||||
if (outPts.needed()) |
||||
{ |
||||
outPts.create(1,fAffine.cols, CV_32FC2); |
||||
Mat outMat = outPts.getMat(); |
||||
for (int i=0; i<fAffine.cols; i++) |
||||
outMat.at<Point2f>(0,i)=fAffine.at<Point2f>(0,i); |
||||
} |
||||
|
||||
// Updating Transform Cost //
|
||||
Mat Af(2, 2, CV_32F); |
||||
Af.at<float>(0,0)=affineMat.at<float>(0,0); |
||||
Af.at<float>(0,1)=affineMat.at<float>(1,0); |
||||
Af.at<float>(1,0)=affineMat.at<float>(0,1); |
||||
Af.at<float>(1,1)=affineMat.at<float>(1,1); |
||||
SVD mysvd(Af, SVD::NO_UV); |
||||
Mat singVals=mysvd.w; |
||||
transformCost=std::log((singVals.at<float>(0,0)+FLT_MIN)/(singVals.at<float>(1,0)+FLT_MIN)); |
||||
|
||||
return transformCost; |
||||
} |
||||
|
||||
Ptr <AffineTransformer> createAffineTransformer(bool fullAffine) |
||||
{ |
||||
return Ptr<AffineTransformer>( new AffineTransformerImpl(fullAffine) ); |
||||
} |
||||
|
||||
} // cv
|
@ -0,0 +1,793 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/*
|
||||
* Implementation of an optimized EMD for histograms based in |
||||
* the papers "EMD-L1: An efficient and Robust Algorithm |
||||
* for comparing histogram-based descriptors", by Haibin Ling and |
||||
* Kazunori Okuda; and "The Earth Mover's Distance is the Mallows |
||||
* Distance: Some Insights from Statistics", by Elizaveta Levina and |
||||
* Peter Bickel, based on HAIBIN LING AND KAZUNORI OKADA implementation. |
||||
*/ |
||||
|
||||
#include "precomp.hpp" |
||||
#include "emdL1_def.hpp" |
||||
#include <limits> |
||||
|
||||
/****************************************************************************************\
|
||||
* EMDL1 Class * |
||||
\****************************************************************************************/ |
||||
|
||||
float EmdL1::getEMDL1(cv::Mat &sig1, cv::Mat &sig2) |
||||
{ |
||||
// Initialization
|
||||
CV_Assert((sig1.rows==sig2.rows) && (sig1.cols==sig2.cols) && (!sig1.empty()) && (!sig2.empty())); |
||||
if(!initBaseTrees(sig1.rows, 1)) |
||||
return -1; |
||||
|
||||
float *H1=new float[sig1.rows], *H2 = new float[sig2.rows]; |
||||
for (int ii=0; ii<sig1.rows; ii++) |
||||
{ |
||||
H1[ii]=sig1.at<float>(ii,0); |
||||
H2[ii]=sig2.at<float>(ii,0); |
||||
} |
||||
|
||||
fillBaseTrees(H1,H2); // Initialize histograms
|
||||
greedySolution(); // Construct an initial Basic Feasible solution
|
||||
initBVTree(); // Initialize BVTree
|
||||
|
||||
// Iteration
|
||||
bool bOptimal = false; |
||||
m_nItr = 0; |
||||
while(!bOptimal && m_nItr<nMaxIt) |
||||
{ |
||||
// Derive U=(u_ij) for row i and column j
|
||||
if(m_nItr==0) updateSubtree(m_pRoot); |
||||
else updateSubtree(m_pEnter->pChild); |
||||
|
||||
// Optimality test
|
||||
bOptimal = isOptimal(); |
||||
|
||||
// Find new solution
|
||||
if(!bOptimal) |
||||
findNewSolution(); |
||||
++m_nItr; |
||||
} |
||||
delete [] H1; |
||||
delete [] H2; |
||||
// Output the total flow
|
||||
return compuTotalFlow(); |
||||
} |
||||
|
||||
void EmdL1::setMaxIteration(int _nMaxIt) |
||||
{ |
||||
nMaxIt=_nMaxIt; |
||||
} |
||||
|
||||
//-- SubFunctions called in the EMD algorithm
|
||||
bool EmdL1::initBaseTrees(int n1, int n2, int n3) |
||||
{ |
||||
if(binsDim1==n1 && binsDim2==n2 && binsDim3==n3) |
||||
return true; |
||||
binsDim1 = n1; |
||||
binsDim2 = n2; |
||||
binsDim3 = n3; |
||||
if(binsDim1==0 || binsDim2==0) dimension = 0; |
||||
else dimension = (binsDim3==0)?2:3; |
||||
|
||||
if(dimension==2) |
||||
{ |
||||
m_Nodes.resize(binsDim1); |
||||
m_EdgesUp.resize(binsDim1); |
||||
m_EdgesRight.resize(binsDim1); |
||||
for(int i1=0; i1<binsDim1; i1++) |
||||
{ |
||||
m_Nodes[i1].resize(binsDim2); |
||||
m_EdgesUp[i1].resize(binsDim2); |
||||
m_EdgesRight[i1].resize(binsDim2); |
||||
} |
||||
m_NBVEdges.resize(binsDim1*binsDim2*4+2); |
||||
m_auxQueue.resize(binsDim1*binsDim2+2); |
||||
m_fromLoop.resize(binsDim1*binsDim2+2); |
||||
m_toLoop.resize(binsDim1*binsDim2+2); |
||||
} |
||||
else if(dimension==3) |
||||
{ |
||||
m_3dNodes.resize(binsDim1); |
||||
m_3dEdgesUp.resize(binsDim1); |
||||
m_3dEdgesRight.resize(binsDim1); |
||||
m_3dEdgesDeep.resize(binsDim1); |
||||
for(int i1=0; i1<binsDim1; i1++) |
||||
{ |
||||
m_3dNodes[i1].resize(binsDim2); |
||||
m_3dEdgesUp[i1].resize(binsDim2); |
||||
m_3dEdgesRight[i1].resize(binsDim2); |
||||
m_3dEdgesDeep[i1].resize(binsDim2); |
||||
for(int i2=0; i2<binsDim2; i2++) |
||||
{ |
||||
m_3dNodes[i1][i2].resize(binsDim3); |
||||
m_3dEdgesUp[i1][i2].resize(binsDim3); |
||||
m_3dEdgesRight[i1][i2].resize(binsDim3); |
||||
m_3dEdgesDeep[i1][i2].resize(binsDim3); |
||||
} |
||||
} |
||||
m_NBVEdges.resize(binsDim1*binsDim2*binsDim3*6+4); |
||||
m_auxQueue.resize(binsDim1*binsDim2*binsDim3+4); |
||||
m_fromLoop.resize(binsDim1*binsDim2*binsDim3+4); |
||||
m_toLoop.resize(binsDim1*binsDim2*binsDim3+2); |
||||
} |
||||
else |
||||
return false; |
||||
|
||||
return true; |
||||
} |
||||
|
||||
bool EmdL1::fillBaseTrees(float *H1, float *H2) |
||||
{ |
||||
//- Set global counters
|
||||
m_pRoot = NULL; |
||||
// Graph initialization
|
||||
float *p1 = H1; |
||||
float *p2 = H2; |
||||
if(dimension==2) |
||||
{ |
||||
for(int c=0; c<binsDim2; c++) |
||||
{ |
||||
for(int r=0; r<binsDim1; r++) |
||||
{ |
||||
//- initialize nodes and links
|
||||
m_Nodes[r][c].pos[0] = r; |
||||
m_Nodes[r][c].pos[1] = c; |
||||
m_Nodes[r][c].d = *(p1++)-*(p2++); |
||||
m_Nodes[r][c].pParent = NULL; |
||||
m_Nodes[r][c].pChild = NULL; |
||||
m_Nodes[r][c].iLevel = -1; |
||||
|
||||
//- initialize edges
|
||||
// to the right
|
||||
m_EdgesRight[r][c].pParent = &(m_Nodes[r][c]); |
||||
m_EdgesRight[r][c].pChild = &(m_Nodes[r][(c+1)%binsDim2]); |
||||
m_EdgesRight[r][c].flow = 0; |
||||
m_EdgesRight[r][c].iDir = 1; |
||||
m_EdgesRight[r][c].pNxt = NULL; |
||||
|
||||
// to the upward
|
||||
m_EdgesUp[r][c].pParent = &(m_Nodes[r][c]); |
||||
m_EdgesUp[r][c].pChild = &(m_Nodes[(r+1)%binsDim1][c]); |
||||
m_EdgesUp[r][c].flow = 0; |
||||
m_EdgesUp[r][c].iDir = 1; |
||||
m_EdgesUp[r][c].pNxt = NULL; |
||||
} |
||||
} |
||||
} |
||||
else if(dimension==3) |
||||
{ |
||||
for(int z=0; z<binsDim3; z++) |
||||
{ |
||||
for(int c=0; c<binsDim2; c++) |
||||
{ |
||||
for(int r=0; r<binsDim1; r++) |
||||
{ |
||||
//- initialize nodes and edges
|
||||
m_3dNodes[r][c][z].pos[0] = r; |
||||
m_3dNodes[r][c][z].pos[1] = c; |
||||
m_3dNodes[r][c][z].pos[2] = z; |
||||
m_3dNodes[r][c][z].d = *(p1++)-*(p2++); |
||||
m_3dNodes[r][c][z].pParent = NULL; |
||||
m_3dNodes[r][c][z].pChild = NULL; |
||||
m_3dNodes[r][c][z].iLevel = -1; |
||||
|
||||
//- initialize edges
|
||||
// to the upward
|
||||
m_3dEdgesUp[r][c][z].pParent= &(m_3dNodes[r][c][z]); |
||||
m_3dEdgesUp[r][c][z].pChild = &(m_3dNodes[(r+1)%binsDim1][c][z]); |
||||
m_3dEdgesUp[r][c][z].flow = 0; |
||||
m_3dEdgesUp[r][c][z].iDir = 1; |
||||
m_3dEdgesUp[r][c][z].pNxt = NULL; |
||||
|
||||
// to the right
|
||||
m_3dEdgesRight[r][c][z].pParent = &(m_3dNodes[r][c][z]); |
||||
m_3dEdgesRight[r][c][z].pChild = &(m_3dNodes[r][(c+1)%binsDim2][z]); |
||||
m_3dEdgesRight[r][c][z].flow = 0; |
||||
m_3dEdgesRight[r][c][z].iDir = 1; |
||||
m_3dEdgesRight[r][c][z].pNxt = NULL; |
||||
|
||||
// to the deep
|
||||
m_3dEdgesDeep[r][c][z].pParent = &(m_3dNodes[r][c][z]); |
||||
m_3dEdgesDeep[r][c][z].pChild = &(m_3dNodes[r][c])[(z+1)%binsDim3]; |
||||
m_3dEdgesDeep[r][c][z].flow = 0; |
||||
m_3dEdgesDeep[r][c][z].iDir = 1; |
||||
m_3dEdgesDeep[r][c][z].pNxt = NULL; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
return true; |
||||
} |
||||
|
||||
bool EmdL1::greedySolution() |
||||
{ |
||||
return dimension==2?greedySolution2():greedySolution3(); |
||||
} |
||||
|
||||
bool EmdL1::greedySolution2() |
||||
{ |
||||
//- Prepare auxiliary array, D=H1-H2
|
||||
int c,r; |
||||
floatArray2D D(binsDim1); |
||||
for(r=0; r<binsDim1; r++) |
||||
{ |
||||
D[r].resize(binsDim2); |
||||
for(c=0; c<binsDim2; c++) D[r][c] = m_Nodes[r][c].d; |
||||
} |
||||
// compute integrated values along each dimension
|
||||
std::vector<float> d2s(binsDim2); |
||||
d2s[0] = 0; |
||||
for(c=0; c<binsDim2-1; c++) |
||||
{ |
||||
d2s[c+1] = d2s[c]; |
||||
for(r=0; r<binsDim1; r++) d2s[c+1]-= D[r][c]; |
||||
} |
||||
|
||||
std::vector<float> d1s(binsDim1); |
||||
d1s[0] = 0; |
||||
for(r=0; r<binsDim1-1; r++) |
||||
{ |
||||
d1s[r+1] = d1s[r]; |
||||
for(c=0; c<binsDim2; c++) d1s[r+1]-= D[r][c]; |
||||
} |
||||
|
||||
//- Greedy algorithm for initial solution
|
||||
cvPEmdEdge pBV; |
||||
float dFlow; |
||||
bool bUpward = false; |
||||
nNBV = 0; // number of NON-BV edges
|
||||
|
||||
for(c=0; c<binsDim2-1; c++) |
||||
for(r=0; r<binsDim1; r++) |
||||
{ |
||||
dFlow = D[r][c]; |
||||
bUpward = (r<binsDim1-1) && (fabs(dFlow+d2s[c+1]) > fabs(dFlow+d1s[r+1])); // Move upward or right
|
||||
|
||||
// modify basic variables, record BV and related values
|
||||
if(bUpward) |
||||
{ |
||||
// move to up
|
||||
pBV = &(m_EdgesUp[r][c]); |
||||
m_NBVEdges[nNBV++] = &(m_EdgesRight[r][c]); |
||||
D[r+1][c] += dFlow; // auxilary matrix maintanence
|
||||
d1s[r+1] += dFlow; // auxilary matrix maintanence
|
||||
} |
||||
else |
||||
{ |
||||
// move to right, no other choice
|
||||
pBV = &(m_EdgesRight[r][c]); |
||||
if(r<binsDim1-1) |
||||
m_NBVEdges[nNBV++] = &(m_EdgesUp[r][c]); |
||||
|
||||
D[r][c+1] += dFlow; // auxilary matrix maintanence
|
||||
d2s[c+1] += dFlow; // auxilary matrix maintanence
|
||||
} |
||||
pBV->pParent->pChild = pBV; |
||||
pBV->flow = fabs(dFlow); |
||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
||||
} |
||||
|
||||
//- rightmost column, no choice but move upward
|
||||
c = binsDim2-1; |
||||
for(r=0; r<binsDim1-1; r++) |
||||
{ |
||||
dFlow = D[r][c]; |
||||
pBV = &(m_EdgesUp[r][c]); |
||||
D[r+1][c] += dFlow; // auxilary matrix maintanence
|
||||
pBV->pParent->pChild= pBV; |
||||
pBV->flow = fabs(dFlow); |
||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
||||
} |
||||
return true; |
||||
} |
||||
|
||||
bool EmdL1::greedySolution3() |
||||
{ |
||||
//- Prepare auxiliary array, D=H1-H2
|
||||
int i1,i2,i3; |
||||
std::vector<floatArray2D> D(binsDim1); |
||||
for(i1=0; i1<binsDim1; i1++) |
||||
{ |
||||
D[i1].resize(binsDim2); |
||||
for(i2=0; i2<binsDim2; i2++) |
||||
{ |
||||
D[i1][i2].resize(binsDim3); |
||||
for(i3=0; i3<binsDim3; i3++) |
||||
D[i1][i2][i3] = m_3dNodes[i1][i2][i3].d; |
||||
} |
||||
} |
||||
|
||||
// compute integrated values along each dimension
|
||||
std::vector<float> d1s(binsDim1); |
||||
d1s[0] = 0; |
||||
for(i1=0; i1<binsDim1-1; i1++) |
||||
{ |
||||
d1s[i1+1] = d1s[i1]; |
||||
for(i2=0; i2<binsDim2; i2++) |
||||
{ |
||||
for(i3=0; i3<binsDim3; i3++) |
||||
d1s[i1+1] -= D[i1][i2][i3]; |
||||
} |
||||
} |
||||
|
||||
std::vector<float> d2s(binsDim2); |
||||
d2s[0] = 0; |
||||
for(i2=0; i2<binsDim2-1; i2++) |
||||
{ |
||||
d2s[i2+1] = d2s[i2]; |
||||
for(i1=0; i1<binsDim1; i1++) |
||||
{ |
||||
for(i3=0; i3<binsDim3; i3++) |
||||
d2s[i2+1] -= D[i1][i2][i3]; |
||||
} |
||||
} |
||||
|
||||
std::vector<float> d3s(binsDim3); |
||||
d3s[0] = 0; |
||||
for(i3=0; i3<binsDim3-1; i3++) |
||||
{ |
||||
d3s[i3+1] = d3s[i3]; |
||||
for(i1=0; i1<binsDim1; i1++) |
||||
{ |
||||
for(i2=0; i2<binsDim2; i2++) |
||||
d3s[i3+1] -= D[i1][i2][i3]; |
||||
} |
||||
} |
||||
|
||||
//- Greedy algorithm for initial solution
|
||||
cvPEmdEdge pBV; |
||||
float dFlow, f1,f2,f3; |
||||
nNBV = 0; // number of NON-BV edges
|
||||
for(i3=0; i3<binsDim3; i3++) |
||||
{ |
||||
for(i2=0; i2<binsDim2; i2++) |
||||
{ |
||||
for(i1=0; i1<binsDim1; i1++) |
||||
{ |
||||
if(i3==binsDim3-1 && i2==binsDim2-1 && i1==binsDim1-1) break; |
||||
|
||||
//- determine which direction to move, either right or upward
|
||||
dFlow = D[i1][i2][i3]; |
||||
f1 = (i1<(binsDim1-1))?fabs(dFlow+d1s[i1+1]):std::numeric_limits<float>::max(); |
||||
f2 = (i2<(binsDim2-1))?fabs(dFlow+d2s[i2+1]):std::numeric_limits<float>::max(); |
||||
f3 = (i3<(binsDim3-1))?fabs(dFlow+d3s[i3+1]):std::numeric_limits<float>::max(); |
||||
|
||||
if(f1<f2 && f1<f3) |
||||
{ |
||||
pBV = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
if(i2<binsDim2-1) m_NBVEdges[nNBV++] = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i3<binsDim3-1) m_NBVEdges[nNBV++] = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
D[i1+1][i2][i3] += dFlow; // maintain auxilary matrix
|
||||
d1s[i1+1] += dFlow; |
||||
} |
||||
else if(f2<f3) |
||||
{ |
||||
pBV = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i1<binsDim1-1) m_NBVEdges[nNBV++] = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
if(i3<binsDim3-1) m_NBVEdges[nNBV++] = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
D[i1][i2+1][i3] += dFlow; // maintain auxilary matrix
|
||||
d2s[i2+1] += dFlow; |
||||
} |
||||
else |
||||
{ |
||||
pBV = &(m_3dEdgesDeep[i1][i2][i3]); // deep
|
||||
if(i2<binsDim2-1) m_NBVEdges[nNBV++] = &(m_3dEdgesRight[i1][i2][i3]); // right
|
||||
if(i1<binsDim1-1) m_NBVEdges[nNBV++] = &(m_3dEdgesUp[i1][i2][i3]); // up
|
||||
D[i1][i2][i3+1] += dFlow; // maintain auxilary matrix
|
||||
d3s[i3+1] += dFlow; |
||||
} |
||||
|
||||
pBV->flow = fabs(dFlow); |
||||
pBV->iDir = dFlow>0; // 1:outward, 0:inward
|
||||
pBV->pParent->pChild= pBV; |
||||
} |
||||
} |
||||
} |
||||
return true; |
||||
} |
||||
|
||||
void EmdL1::initBVTree() |
||||
{ |
||||
// initialize BVTree from the initial BF solution
|
||||
//- Using the center of the graph as the root
|
||||
int r = (int)(0.5*binsDim1-.5); |
||||
int c = (int)(0.5*binsDim2-.5); |
||||
int z = (int)(0.5*binsDim3-.5); |
||||
m_pRoot = dimension==2 ? &(m_Nodes[r][c]) : &(m_3dNodes[r][c][z]); |
||||
m_pRoot->u = 0; |
||||
m_pRoot->iLevel = 0; |
||||
m_pRoot->pParent= NULL; |
||||
m_pRoot->pPEdge = NULL; |
||||
|
||||
//- Prepare a queue
|
||||
m_auxQueue[0] = m_pRoot; |
||||
int nQueue = 1; // length of queue
|
||||
int iQHead = 0; // head of queue
|
||||
|
||||
//- Recursively build subtrees
|
||||
cvPEmdEdge pCurE=NULL, pNxtE=NULL; |
||||
cvPEmdNode pCurN=NULL, pNxtN=NULL; |
||||
int nBin = binsDim1*binsDim2*std::max(binsDim3,1); |
||||
while(iQHead<nQueue && nQueue<nBin) |
||||
{ |
||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
||||
r = pCurN->pos[0]; |
||||
c = pCurN->pos[1]; |
||||
z = pCurN->pos[2]; |
||||
|
||||
// check connection from itself
|
||||
pCurE = pCurN->pChild; // the initial child from initial solution
|
||||
if(pCurE) |
||||
{ |
||||
pNxtN = pCurE->pChild; |
||||
pNxtN->pParent = pCurN; |
||||
pNxtN->pPEdge = pCurE; |
||||
m_auxQueue[nQueue++] = pNxtN; |
||||
} |
||||
|
||||
// check four neighbor nodes
|
||||
int nNB = dimension==2?4:6; |
||||
for(int k=0;k<nNB;k++) |
||||
{ |
||||
if(dimension==2) |
||||
{ |
||||
if(k==0 && c>0) pNxtN = &(m_Nodes[r][c-1]); // left
|
||||
else if(k==1 && r>0) pNxtN = &(m_Nodes[r-1][c]); // down
|
||||
else if(k==2 && c<binsDim2-1) pNxtN = &(m_Nodes[r][c+1]); // right
|
||||
else if(k==3 && r<binsDim1-1) pNxtN = &(m_Nodes[r+1][c]); // up
|
||||
else continue; |
||||
} |
||||
else if(dimension==3) |
||||
{ |
||||
if(k==0 && c>0) pNxtN = &(m_3dNodes[r][c-1][z]); // left
|
||||
else if(k==1 && c<binsDim2-1) pNxtN = &(m_3dNodes[r][c+1][z]); // right
|
||||
else if(k==2 && r>0) pNxtN = &(m_3dNodes[r-1][c][z]); // down
|
||||
else if(k==3 && r<binsDim1-1) pNxtN = &(m_3dNodes[r+1][c][z]); // up
|
||||
else if(k==4 && z>0) pNxtN = &(m_3dNodes[r][c][z-1]); // shallow
|
||||
else if(k==5 && z<binsDim3-1) pNxtN = &(m_3dNodes[r][c][z+1]); // deep
|
||||
else continue; |
||||
} |
||||
if(pNxtN != pCurN->pParent) |
||||
{ |
||||
pNxtE = pNxtN->pChild; |
||||
if(pNxtE && pNxtE->pChild==pCurN) // has connection
|
||||
{ |
||||
pNxtN->pParent = pCurN; |
||||
pNxtN->pPEdge = pNxtE; |
||||
pNxtN->pChild = NULL; |
||||
m_auxQueue[nQueue++] = pNxtN; |
||||
|
||||
pNxtE->pParent = pCurN; // reverse direction
|
||||
pNxtE->pChild = pNxtN; |
||||
pNxtE->iDir = !pNxtE->iDir; |
||||
|
||||
if(pCurE) pCurE->pNxt = pNxtE; // add to edge list
|
||||
else pCurN->pChild = pNxtE; |
||||
pCurE = pNxtE; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void EmdL1::updateSubtree(cvPEmdNode pRoot) |
||||
{ |
||||
// Initialize auxiliary queue
|
||||
m_auxQueue[0] = pRoot; |
||||
int nQueue = 1; // queue length
|
||||
int iQHead = 0; // head of queue
|
||||
|
||||
// BFS browing
|
||||
cvPEmdNode pCurN=NULL,pNxtN=NULL; |
||||
cvPEmdEdge pCurE=NULL; |
||||
while(iQHead<nQueue) |
||||
{ |
||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
||||
pCurE = pCurN->pChild; |
||||
|
||||
// browsing all children
|
||||
while(pCurE) |
||||
{ |
||||
pNxtN = pCurE->pChild; |
||||
pNxtN->iLevel = pCurN->iLevel+1; |
||||
pNxtN->u = pCurE->iDir ? (pCurN->u - 1) : (pCurN->u + 1); |
||||
pCurE = pCurE->pNxt; |
||||
m_auxQueue[nQueue++] = pNxtN; |
||||
} |
||||
} |
||||
} |
||||
|
||||
bool EmdL1::isOptimal() |
||||
{ |
||||
int iC, iMinC = 0; |
||||
cvPEmdEdge pE; |
||||
m_pEnter = NULL; |
||||
m_iEnter = -1; |
||||
|
||||
// test each NON-BV edges
|
||||
for(int k=0; k<nNBV; ++k) |
||||
{ |
||||
pE = m_NBVEdges[k]; |
||||
iC = 1 - pE->pParent->u + pE->pChild->u; |
||||
if(iC<iMinC) |
||||
{ |
||||
iMinC = iC; |
||||
m_iEnter= k; |
||||
} |
||||
else |
||||
{ |
||||
// Try reversing the direction
|
||||
iC = 1 + pE->pParent->u - pE->pChild->u; |
||||
if(iC<iMinC) |
||||
{ |
||||
iMinC = iC; |
||||
m_iEnter= k; |
||||
} |
||||
} |
||||
} |
||||
|
||||
if(m_iEnter>=0) |
||||
{ |
||||
m_pEnter = m_NBVEdges[m_iEnter]; |
||||
if(iMinC == (1 - m_pEnter->pChild->u + m_pEnter->pParent->u)) { |
||||
// reverse direction
|
||||
cvPEmdNode pN = m_pEnter->pParent; |
||||
m_pEnter->pParent = m_pEnter->pChild; |
||||
m_pEnter->pChild = pN; |
||||
} |
||||
|
||||
m_pEnter->iDir = 1; |
||||
} |
||||
return m_iEnter==-1; |
||||
} |
||||
|
||||
void EmdL1::findNewSolution() |
||||
{ |
||||
// Find loop formed by adding the Enter BV edge.
|
||||
findLoopFromEnterBV(); |
||||
// Modify flow values along the loop
|
||||
cvPEmdEdge pE = NULL; |
||||
float minFlow = m_pLeave->flow; |
||||
int k; |
||||
for(k=0; k<m_iFrom; k++) |
||||
{ |
||||
pE = m_fromLoop[k]; |
||||
if(pE->iDir) pE->flow += minFlow; // outward
|
||||
else pE->flow -= minFlow; // inward
|
||||
} |
||||
for(k=0; k<m_iTo; k++) |
||||
{ |
||||
pE = m_toLoop[k]; |
||||
if(pE->iDir) pE->flow -= minFlow; // outward
|
||||
else pE->flow += minFlow; // inward
|
||||
} |
||||
|
||||
// Update BV Tree, removing the Leaving-BV edge
|
||||
cvPEmdNode pLParentN = m_pLeave->pParent; |
||||
cvPEmdNode pLChildN = m_pLeave->pChild; |
||||
cvPEmdEdge pPreE = pLParentN->pChild; |
||||
if(pPreE==m_pLeave) |
||||
{ |
||||
pLParentN->pChild = m_pLeave->pNxt; // Leaving-BV is the first child
|
||||
} |
||||
else |
||||
{ |
||||
while(pPreE->pNxt != m_pLeave) |
||||
pPreE = pPreE->pNxt; |
||||
pPreE->pNxt = m_pLeave->pNxt; // remove Leaving-BV from child list
|
||||
} |
||||
pLChildN->pParent = NULL; |
||||
pLChildN->pPEdge = NULL; |
||||
|
||||
m_NBVEdges[m_iEnter]= m_pLeave; // put the leaving-BV into the NBV array
|
||||
|
||||
// Add the Enter BV edge
|
||||
cvPEmdNode pEParentN = m_pEnter->pParent; |
||||
cvPEmdNode pEChildN = m_pEnter->pChild; |
||||
m_pEnter->flow = minFlow; |
||||
m_pEnter->pNxt = pEParentN->pChild; // insert the Enter BV as the first child
|
||||
pEParentN->pChild = m_pEnter; // of its parent
|
||||
|
||||
// Recursively update the tree start from pEChildN
|
||||
cvPEmdNode pPreN = pEParentN; |
||||
cvPEmdNode pCurN = pEChildN; |
||||
cvPEmdNode pNxtN; |
||||
cvPEmdEdge pNxtE, pPreE0; |
||||
pPreE = m_pEnter; |
||||
while(pCurN) |
||||
{ |
||||
pNxtN = pCurN->pParent; |
||||
pNxtE = pCurN->pPEdge; |
||||
pCurN->pParent = pPreN; |
||||
pCurN->pPEdge = pPreE; |
||||
if(pNxtN) |
||||
{ |
||||
// remove the edge from pNxtN's child list
|
||||
if(pNxtN->pChild==pNxtE) |
||||
{ |
||||
pNxtN->pChild = pNxtE->pNxt; // first child
|
||||
} |
||||
else |
||||
{ |
||||
pPreE0 = pNxtN->pChild; |
||||
while(pPreE0->pNxt != pNxtE) |
||||
pPreE0 = pPreE0->pNxt; |
||||
pPreE0->pNxt = pNxtE->pNxt; // remove Leaving-BV from child list
|
||||
} |
||||
// reverse the parent-child direction
|
||||
pNxtE->pParent = pCurN; |
||||
pNxtE->pChild = pNxtN; |
||||
pNxtE->iDir = !pNxtE->iDir; |
||||
pNxtE->pNxt = pCurN->pChild; |
||||
pCurN->pChild = pNxtE; |
||||
pPreE = pNxtE; |
||||
pPreN = pCurN; |
||||
} |
||||
pCurN = pNxtN; |
||||
} |
||||
|
||||
// Update U at the child of the Enter BV
|
||||
pEChildN->u = m_pEnter->iDir?(pEParentN->u-1):(pEParentN->u + 1); |
||||
pEChildN->iLevel = pEParentN->iLevel+1; |
||||
} |
||||
|
||||
void EmdL1::findLoopFromEnterBV() |
||||
{ |
||||
// Initialize Leaving-BV edge
|
||||
float minFlow = std::numeric_limits<float>::max(); |
||||
cvPEmdEdge pE = NULL; |
||||
int iLFlag = 0; // 0: in the FROM list, 1: in the TO list
|
||||
|
||||
// Using two loop list to store the loop nodes
|
||||
cvPEmdNode pFrom = m_pEnter->pParent; |
||||
cvPEmdNode pTo = m_pEnter->pChild; |
||||
m_iFrom = 0; |
||||
m_iTo = 0; |
||||
m_pLeave = NULL; |
||||
|
||||
// Trace back to make pFrom and pTo at the same level
|
||||
while(pFrom->iLevel > pTo->iLevel) |
||||
{ |
||||
pE = pFrom->pPEdge; |
||||
m_fromLoop[m_iFrom++] = pE; |
||||
if(!pE->iDir && pE->flow<minFlow) |
||||
{ |
||||
minFlow = pE->flow; |
||||
m_pLeave = pE; |
||||
iLFlag = 0; // 0: in the FROM list
|
||||
} |
||||
pFrom = pFrom->pParent; |
||||
} |
||||
|
||||
while(pTo->iLevel > pFrom->iLevel) |
||||
{ |
||||
pE = pTo->pPEdge; |
||||
m_toLoop[m_iTo++] = pE; |
||||
if(pE->iDir && pE->flow<minFlow) |
||||
{ |
||||
minFlow = pE->flow; |
||||
m_pLeave = pE; |
||||
iLFlag = 1; // 1: in the TO list
|
||||
} |
||||
pTo = pTo->pParent; |
||||
} |
||||
|
||||
// Trace pTo and pFrom simultaneously till find their common ancester
|
||||
while(pTo!=pFrom) |
||||
{ |
||||
pE = pFrom->pPEdge; |
||||
m_fromLoop[m_iFrom++] = pE; |
||||
if(!pE->iDir && pE->flow<minFlow) |
||||
{ |
||||
minFlow = pE->flow; |
||||
m_pLeave = pE; |
||||
iLFlag = 0; // 0: in the FROM list, 1: in the TO list
|
||||
} |
||||
pFrom = pFrom->pParent; |
||||
|
||||
pE = pTo->pPEdge; |
||||
m_toLoop[m_iTo++] = pE; |
||||
if(pE->iDir && pE->flow<minFlow) |
||||
{ |
||||
minFlow = pE->flow; |
||||
m_pLeave = pE; |
||||
iLFlag = 1; // 0: in the FROM list, 1: in the TO list
|
||||
} |
||||
pTo = pTo->pParent; |
||||
} |
||||
|
||||
// Reverse the direction of the Enter BV edge if necessary
|
||||
if(iLFlag==0) |
||||
{ |
||||
cvPEmdNode pN = m_pEnter->pParent; |
||||
m_pEnter->pParent = m_pEnter->pChild; |
||||
m_pEnter->pChild = pN; |
||||
m_pEnter->iDir = !m_pEnter->iDir; |
||||
} |
||||
} |
||||
|
||||
float EmdL1::compuTotalFlow() |
||||
{ |
||||
// Computing the total flow as the final distance
|
||||
float f = 0; |
||||
|
||||
// Initialize auxiliary queue
|
||||
m_auxQueue[0] = m_pRoot; |
||||
int nQueue = 1; // length of queue
|
||||
int iQHead = 0; // head of queue
|
||||
|
||||
// BFS browing the tree
|
||||
cvPEmdNode pCurN=NULL,pNxtN=NULL; |
||||
cvPEmdEdge pCurE=NULL; |
||||
while(iQHead<nQueue) |
||||
{ |
||||
pCurN = m_auxQueue[iQHead++]; // pop out from queue
|
||||
pCurE = pCurN->pChild; |
||||
|
||||
// browsing all children
|
||||
while(pCurE) |
||||
{ |
||||
f += pCurE->flow; |
||||
pNxtN = pCurE->pChild; |
||||
pCurE = pCurE->pNxt; |
||||
m_auxQueue[nQueue++] = pNxtN; |
||||
} |
||||
} |
||||
return f; |
||||
} |
||||
|
||||
/****************************************************************************************\
|
||||
* EMDL1 Function * |
||||
\****************************************************************************************/ |
||||
|
||||
float cv::EMDL1(InputArray _signature1, InputArray _signature2) |
||||
{ |
||||
Mat signature1 = _signature1.getMat(), signature2 = _signature2.getMat(); |
||||
EmdL1 emdl1; |
||||
return emdl1.getEMDL1(signature1, signature2); |
||||
} |
@ -0,0 +1,140 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <stdlib.h> |
||||
#include <math.h> |
||||
#include <vector> |
||||
|
||||
/****************************************************************************************\
|
||||
* For EMDL1 Framework * |
||||
\****************************************************************************************/ |
||||
typedef struct cvEMDEdge* cvPEmdEdge; |
||||
typedef struct cvEMDNode* cvPEmdNode; |
||||
struct cvEMDNode |
||||
{ |
||||
int pos[3]; // grid position
|
||||
float d; // initial value
|
||||
int u; |
||||
// tree maintainance
|
||||
int iLevel; // level in the tree, 0 means root
|
||||
cvPEmdNode pParent; // pointer to its parent
|
||||
cvPEmdEdge pChild; |
||||
cvPEmdEdge pPEdge; // point to the edge coming out from its parent
|
||||
}; |
||||
struct cvEMDEdge |
||||
{ |
||||
float flow; // initial value
|
||||
int iDir; // 1:outward, 0:inward
|
||||
// tree maintainance
|
||||
cvPEmdNode pParent; // point to its parent
|
||||
cvPEmdNode pChild; // the child node
|
||||
cvPEmdEdge pNxt; // next child/edge
|
||||
}; |
||||
typedef std::vector<cvEMDNode> cvEMDNodeArray; |
||||
typedef std::vector<cvEMDEdge> cvEMDEdgeArray; |
||||
typedef std::vector<cvEMDNodeArray> cvEMDNodeArray2D; |
||||
typedef std::vector<cvEMDEdgeArray> cvEMDEdgeArray2D; |
||||
typedef std::vector<float> floatArray; |
||||
typedef std::vector<floatArray> floatArray2D; |
||||
|
||||
/****************************************************************************************\
|
||||
* EMDL1 Class * |
||||
\****************************************************************************************/ |
||||
class EmdL1 |
||||
{ |
||||
public: |
||||
EmdL1() |
||||
{ |
||||
m_pRoot = NULL; |
||||
binsDim1 = 0; |
||||
binsDim2 = 0; |
||||
binsDim3 = 0; |
||||
dimension = 0; |
||||
nMaxIt = 500; |
||||
} |
||||
|
||||
~EmdL1() |
||||
{ |
||||
} |
||||
|
||||
float getEMDL1(cv::Mat &sig1, cv::Mat &sig2); |
||||
void setMaxIteration(int _nMaxIt); |
||||
|
||||
private: |
||||
//-- SubFunctions called in the EMD algorithm
|
||||
bool initBaseTrees(int n1=0, int n2=0, int n3=0); |
||||
bool fillBaseTrees(float *H1, float *H2); |
||||
bool greedySolution(); |
||||
bool greedySolution2(); |
||||
bool greedySolution3(); |
||||
void initBVTree(); |
||||
void updateSubtree(cvPEmdNode pRoot); |
||||
bool isOptimal(); |
||||
void findNewSolution(); |
||||
void findLoopFromEnterBV(); |
||||
float compuTotalFlow(); |
||||
|
||||
private: |
||||
int dimension; |
||||
int binsDim1, binsDim2, binsDim3; // the hitogram contains m_n1 rows and m_n2 columns
|
||||
int nNBV; // number of Non-Basic Variables (NBV)
|
||||
int nMaxIt; |
||||
cvEMDNodeArray2D m_Nodes; // all nodes
|
||||
cvEMDEdgeArray2D m_EdgesRight; // all edges to right
|
||||
cvEMDEdgeArray2D m_EdgesUp; // all edges to upward
|
||||
std::vector<cvEMDNodeArray2D> m_3dNodes; // all nodes for 3D
|
||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesRight; // all edges to right, 3D
|
||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesUp; // all edges to upward, 3D
|
||||
std::vector<cvEMDEdgeArray2D> m_3dEdgesDeep; // all edges to deep, 3D
|
||||
std::vector<cvPEmdEdge> m_NBVEdges; // pointers to all NON-BV edges
|
||||
std::vector<cvPEmdNode> m_auxQueue; // auxiliary node queue
|
||||
cvPEmdNode m_pRoot; // root of the BV Tree
|
||||
cvPEmdEdge m_pEnter; // Enter BV edge
|
||||
int m_iEnter; // Enter BV edge, index in m_NBVEdges
|
||||
cvPEmdEdge m_pLeave; // Leave BV edge
|
||||
int m_nItr; // number of iteration
|
||||
// auxiliary variables for searching a new loop
|
||||
std::vector<cvPEmdEdge> m_fromLoop; |
||||
std::vector<cvPEmdEdge> m_toLoop; |
||||
int m_iFrom; |
||||
int m_iTo; |
||||
}; |
@ -0,0 +1,149 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
class HausdorffDistanceExtractorImpl : public HausdorffDistanceExtractor |
||||
{ |
||||
public: |
||||
/* Constructor */ |
||||
HausdorffDistanceExtractorImpl(int _distanceFlag = NORM_L1, float _rankProportion=0.6) |
||||
{ |
||||
distanceFlag = _distanceFlag; |
||||
rankProportion = _rankProportion; |
||||
name_ = "ShapeDistanceExtractor.HAU"; |
||||
} |
||||
|
||||
/* Destructor */ |
||||
~HausdorffDistanceExtractorImpl() |
||||
{ |
||||
} |
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; } |
||||
|
||||
//! the main operator
|
||||
virtual float computeDistance(InputArray contour1, InputArray contour2); |
||||
|
||||
//! Setters/Getters
|
||||
virtual void setDistanceFlag(int _distanceFlag) {distanceFlag=_distanceFlag;} |
||||
virtual int getDistanceFlag() const {return distanceFlag;} |
||||
|
||||
virtual void setRankProportion(float _rankProportion) |
||||
{ |
||||
CV_Assert((_rankProportion>0) && (_rankProportion<=1)); |
||||
rankProportion=_rankProportion; |
||||
} |
||||
virtual float getRankProportion() const {return rankProportion;} |
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << name_ |
||||
<< "distance" << distanceFlag |
||||
<< "rank" << rankProportion; |
||||
} |
||||
|
||||
virtual void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( (String)fn["name"] == name_ ); |
||||
distanceFlag = (int)fn["distance"]; |
||||
rankProportion = (float)fn["rank"]; |
||||
} |
||||
|
||||
private: |
||||
int distanceFlag; |
||||
float rankProportion; |
||||
|
||||
protected: |
||||
String name_; |
||||
}; |
||||
|
||||
//! Hausdorff distance for a pair of set of points
|
||||
static float _apply(const Mat &set1, const Mat &set2, int distType, double propRank) |
||||
{ |
||||
// Building distance matrix //
|
||||
Mat disMat(set1.cols, set2.cols, CV_32F); |
||||
int K = int(propRank*(disMat.rows-1)); |
||||
|
||||
for (int r=0; r<disMat.rows; r++) |
||||
{ |
||||
for (int c=0; c<disMat.cols; c++) |
||||
{ |
||||
Point2f diff = set1.at<Point2f>(0,r)-set2.at<Point2f>(0,c); |
||||
disMat.at<float>(r,c) = (float)norm(Mat(diff), distType); |
||||
} |
||||
} |
||||
|
||||
Mat shortest(disMat.rows,1,CV_32F); |
||||
for (int ii=0; ii<disMat.rows; ii++) |
||||
{ |
||||
Mat therow = disMat.row(ii); |
||||
double mindis; |
||||
minMaxIdx(therow, &mindis); |
||||
shortest.at<float>(ii,0) = float(mindis); |
||||
} |
||||
Mat sorted; |
||||
cv::sort(shortest, sorted, SORT_EVERY_ROW | SORT_DESCENDING); |
||||
return sorted.at<float>(K,0); |
||||
} |
||||
|
||||
float HausdorffDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2) |
||||
{ |
||||
Mat set1=contour1.getMat(), set2=contour2.getMat(); |
||||
if (set1.type() != CV_32F) |
||||
set1.convertTo(set1, CV_32F); |
||||
if (set2.type() != CV_32F) |
||||
set2.convertTo(set2, CV_32F); |
||||
CV_Assert((set1.channels()==2) && (set1.cols>0)); |
||||
CV_Assert((set2.channels()==2) && (set2.cols>0)); |
||||
return std::max( _apply(set1, set2, distanceFlag, rankProportion), |
||||
_apply(set2, set1, distanceFlag, rankProportion) ); |
||||
} |
||||
|
||||
Ptr <HausdorffDistanceExtractor> createHausdorffDistanceExtractor(int distanceFlag, float rankProp) |
||||
{ |
||||
return Ptr<HausdorffDistanceExtractor>(new HausdorffDistanceExtractorImpl(distanceFlag, rankProp)); |
||||
} |
||||
|
||||
} // cv
|
@ -0,0 +1,545 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
/*! */ |
||||
class NormHistogramCostExtractorImpl : public NormHistogramCostExtractor |
||||
{ |
||||
public: |
||||
/* Constructors */ |
||||
NormHistogramCostExtractorImpl(int _flag, int _nDummies, float _defaultCost) |
||||
{ |
||||
flag=_flag; |
||||
nDummies=_nDummies; |
||||
defaultCost=_defaultCost; |
||||
name_ = "HistogramCostExtractor.NOR"; |
||||
} |
||||
|
||||
/* Destructor */ |
||||
~NormHistogramCostExtractorImpl() |
||||
{ |
||||
} |
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; } |
||||
|
||||
//! the main operator
|
||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix); |
||||
|
||||
//! Setters/Getters
|
||||
void setNDummies(int _nDummies) |
||||
{ |
||||
nDummies=_nDummies; |
||||
} |
||||
|
||||
int getNDummies() const |
||||
{ |
||||
return nDummies; |
||||
} |
||||
|
||||
void setDefaultCost(float _defaultCost) |
||||
{ |
||||
defaultCost=_defaultCost; |
||||
} |
||||
|
||||
float getDefaultCost() const |
||||
{ |
||||
return defaultCost; |
||||
} |
||||
|
||||
virtual void setNormFlag(int _flag) |
||||
{ |
||||
flag=_flag; |
||||
} |
||||
|
||||
virtual int getNormFlag() const |
||||
{ |
||||
return flag; |
||||
} |
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << name_ |
||||
<< "flag" << flag |
||||
<< "dummies" << nDummies |
||||
<< "default" << defaultCost; |
||||
} |
||||
|
||||
virtual void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( (String)fn["name"] == name_ ); |
||||
flag = (int)fn["flag"]; |
||||
nDummies = (int)fn["dummies"]; |
||||
defaultCost = (float)fn["default"]; |
||||
} |
||||
|
||||
private: |
||||
int flag; |
||||
int nDummies; |
||||
float defaultCost; |
||||
|
||||
protected: |
||||
String name_; |
||||
}; |
||||
|
||||
void NormHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) |
||||
{ |
||||
// size of the costMatrix with dummies //
|
||||
Mat descriptors1=_descriptors1.getMat(); |
||||
Mat descriptors2=_descriptors2.getMat(); |
||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; |
||||
_costMatrix.create(costrows, costrows, CV_32F); |
||||
Mat costMatrix=_costMatrix.getMat(); |
||||
|
||||
|
||||
// Obtain copies of the descriptors //
|
||||
cv::Mat scd1 = descriptors1.clone(); |
||||
cv::Mat scd2 = descriptors2.clone(); |
||||
|
||||
// row normalization //
|
||||
for(int i=0; i<scd1.rows; i++) |
||||
{ |
||||
scd1.row(i)/=(sum(scd1.row(i))[0]+FLT_EPSILON); |
||||
} |
||||
for(int i=0; i<scd2.rows; i++) |
||||
{ |
||||
scd2.row(i)/=(sum(scd2.row(i))[0]+FLT_EPSILON); |
||||
} |
||||
|
||||
// Compute the Cost Matrix //
|
||||
for(int i=0; i<costrows; i++) |
||||
{ |
||||
for(int j=0; j<costrows; j++) |
||||
{ |
||||
if (i<scd1.rows && j<scd2.rows) |
||||
{ |
||||
Mat columnDiff = scd1.row(i)-scd2.row(j); |
||||
costMatrix.at<float>(i,j)=(float)norm(columnDiff, flag); |
||||
} |
||||
else |
||||
{ |
||||
costMatrix.at<float>(i,j)=defaultCost; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
Ptr <HistogramCostExtractor> createNormHistogramCostExtractor(int flag, int nDummies, float defaultCost) |
||||
{ |
||||
return Ptr <HistogramCostExtractor>( new NormHistogramCostExtractorImpl(flag, nDummies, defaultCost) ); |
||||
} |
||||
|
||||
/*! */ |
||||
class EMDHistogramCostExtractorImpl : public EMDHistogramCostExtractor |
||||
{ |
||||
public: |
||||
/* Constructors */ |
||||
EMDHistogramCostExtractorImpl(int _flag, int _nDummies, float _defaultCost) |
||||
{ |
||||
flag=_flag; |
||||
nDummies=_nDummies; |
||||
defaultCost=_defaultCost; |
||||
name_ = "HistogramCostExtractor.EMD"; |
||||
} |
||||
|
||||
/* Destructor */ |
||||
~EMDHistogramCostExtractorImpl() |
||||
{ |
||||
} |
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; } |
||||
|
||||
//! the main operator
|
||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix); |
||||
|
||||
//! Setters/Getters
|
||||
void setNDummies(int _nDummies) |
||||
{ |
||||
nDummies=_nDummies; |
||||
} |
||||
|
||||
int getNDummies() const |
||||
{ |
||||
return nDummies; |
||||
} |
||||
|
||||
void setDefaultCost(float _defaultCost) |
||||
{ |
||||
defaultCost=_defaultCost; |
||||
} |
||||
|
||||
float getDefaultCost() const |
||||
{ |
||||
return defaultCost; |
||||
} |
||||
|
||||
virtual void setNormFlag(int _flag) |
||||
{ |
||||
flag=_flag; |
||||
} |
||||
|
||||
virtual int getNormFlag() const |
||||
{ |
||||
return flag; |
||||
} |
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << name_ |
||||
<< "flag" << flag |
||||
<< "dummies" << nDummies |
||||
<< "default" << defaultCost; |
||||
} |
||||
|
||||
virtual void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( (String)fn["name"] == name_ ); |
||||
flag = (int)fn["flag"]; |
||||
nDummies = (int)fn["dummies"]; |
||||
defaultCost = (float)fn["default"]; |
||||
} |
||||
|
||||
private: |
||||
int flag; |
||||
int nDummies; |
||||
float defaultCost; |
||||
|
||||
protected: |
||||
String name_; |
||||
}; |
||||
|
||||
void EMDHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) |
||||
{ |
||||
// size of the costMatrix with dummies //
|
||||
Mat descriptors1=_descriptors1.getMat(); |
||||
Mat descriptors2=_descriptors2.getMat(); |
||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; |
||||
_costMatrix.create(costrows, costrows, CV_32F); |
||||
Mat costMatrix=_costMatrix.getMat(); |
||||
|
||||
// Obtain copies of the descriptors //
|
||||
cv::Mat scd1=descriptors1.clone(); |
||||
cv::Mat scd2=descriptors2.clone(); |
||||
|
||||
// row normalization //
|
||||
for(int i=0; i<scd1.rows; i++) |
||||
{ |
||||
cv::Mat row = scd1.row(i); |
||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON); |
||||
} |
||||
for(int i=0; i<scd2.rows; i++) |
||||
{ |
||||
cv::Mat row = scd2.row(i); |
||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON); |
||||
} |
||||
|
||||
// Compute the Cost Matrix //
|
||||
for(int i=0; i<costrows; i++) |
||||
{ |
||||
for(int j=0; j<costrows; j++) |
||||
{ |
||||
if (i<scd1.rows && j<scd2.rows) |
||||
{ |
||||
cv::Mat sig1(scd1.cols,2,CV_32F), sig2(scd2.cols,2,CV_32F); |
||||
sig1.col(0)=scd1.row(i).t(); |
||||
sig2.col(0)=scd2.row(j).t(); |
||||
for (int k=0; k<sig1.rows; k++) |
||||
{ |
||||
sig1.at<float>(k,1)=float(k); |
||||
} |
||||
for (int k=0; k<sig2.rows; k++) |
||||
{ |
||||
sig2.at<float>(k,1)=float(k); |
||||
} |
||||
|
||||
costMatrix.at<float>(i,j) = cv::EMD(sig1, sig2, flag); |
||||
} |
||||
else |
||||
{ |
||||
costMatrix.at<float>(i,j) = defaultCost; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
Ptr <HistogramCostExtractor> createEMDHistogramCostExtractor(int flag, int nDummies, float defaultCost) |
||||
{ |
||||
return Ptr <HistogramCostExtractor>( new EMDHistogramCostExtractorImpl(flag, nDummies, defaultCost) ); |
||||
} |
||||
|
||||
/*! */ |
||||
class ChiHistogramCostExtractorImpl : public ChiHistogramCostExtractor |
||||
{ |
||||
public: |
||||
/* Constructors */ |
||||
ChiHistogramCostExtractorImpl(int _nDummies, float _defaultCost) |
||||
{ |
||||
name_ = "HistogramCostExtractor.CHI"; |
||||
nDummies=_nDummies; |
||||
defaultCost=_defaultCost; |
||||
} |
||||
|
||||
/* Destructor */ |
||||
~ChiHistogramCostExtractorImpl() |
||||
{ |
||||
} |
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; } |
||||
|
||||
//! the main operator
|
||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix); |
||||
|
||||
//! setters / getters
|
||||
void setNDummies(int _nDummies) |
||||
{ |
||||
nDummies=_nDummies; |
||||
} |
||||
|
||||
int getNDummies() const |
||||
{ |
||||
return nDummies; |
||||
} |
||||
|
||||
void setDefaultCost(float _defaultCost) |
||||
{ |
||||
defaultCost=_defaultCost; |
||||
} |
||||
|
||||
float getDefaultCost() const |
||||
{ |
||||
return defaultCost; |
||||
} |
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << name_ |
||||
<< "dummies" << nDummies |
||||
<< "default" << defaultCost; |
||||
} |
||||
|
||||
virtual void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( (String)fn["name"] == name_ ); |
||||
nDummies = (int)fn["dummies"]; |
||||
defaultCost = (float)fn["default"]; |
||||
} |
||||
|
||||
protected: |
||||
String name_; |
||||
int nDummies; |
||||
float defaultCost; |
||||
}; |
||||
|
||||
void ChiHistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) |
||||
{ |
||||
// size of the costMatrix with dummies //
|
||||
Mat descriptors1=_descriptors1.getMat(); |
||||
Mat descriptors2=_descriptors2.getMat(); |
||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; |
||||
_costMatrix.create(costrows, costrows, CV_32FC1); |
||||
Mat costMatrix=_costMatrix.getMat(); |
||||
|
||||
// Obtain copies of the descriptors //
|
||||
cv::Mat scd1=descriptors1.clone(); |
||||
cv::Mat scd2=descriptors2.clone(); |
||||
|
||||
// row normalization //
|
||||
for(int i=0; i<scd1.rows; i++) |
||||
{ |
||||
cv::Mat row = scd1.row(i); |
||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON); |
||||
} |
||||
for(int i=0; i<scd2.rows; i++) |
||||
{ |
||||
cv::Mat row = scd2.row(i); |
||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON); |
||||
} |
||||
|
||||
// Compute the Cost Matrix //
|
||||
for(int i=0; i<costrows; i++) |
||||
{ |
||||
for(int j=0; j<costrows; j++) |
||||
{ |
||||
if (i<scd1.rows && j<scd2.rows) |
||||
{ |
||||
float csum = 0; |
||||
for(int k=0; k<scd2.cols; k++) |
||||
{ |
||||
float resta=scd1.at<float>(i,k)-scd2.at<float>(j,k); |
||||
float suma=scd1.at<float>(i,k)+scd2.at<float>(j,k); |
||||
csum += resta*resta/(FLT_EPSILON+suma); |
||||
} |
||||
costMatrix.at<float>(i,j)=csum/2; |
||||
} |
||||
else |
||||
{ |
||||
costMatrix.at<float>(i,j)=defaultCost; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
Ptr <HistogramCostExtractor> createChiHistogramCostExtractor(int nDummies, float defaultCost) |
||||
{ |
||||
return Ptr <HistogramCostExtractor>( new ChiHistogramCostExtractorImpl(nDummies, defaultCost) ); |
||||
} |
||||
|
||||
/*! */ |
||||
class EMDL1HistogramCostExtractorImpl : public EMDL1HistogramCostExtractor |
||||
{ |
||||
public: |
||||
/* Constructors */ |
||||
EMDL1HistogramCostExtractorImpl(int _nDummies, float _defaultCost) |
||||
{ |
||||
name_ = "HistogramCostExtractor.CHI"; |
||||
nDummies=_nDummies; |
||||
defaultCost=_defaultCost; |
||||
} |
||||
|
||||
/* Destructor */ |
||||
~EMDL1HistogramCostExtractorImpl() |
||||
{ |
||||
} |
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; } |
||||
|
||||
//! the main operator
|
||||
virtual void buildCostMatrix(InputArray descriptors1, InputArray descriptors2, OutputArray costMatrix); |
||||
|
||||
//! setters / getters
|
||||
void setNDummies(int _nDummies) |
||||
{ |
||||
nDummies=_nDummies; |
||||
} |
||||
|
||||
int getNDummies() const |
||||
{ |
||||
return nDummies; |
||||
} |
||||
|
||||
void setDefaultCost(float _defaultCost) |
||||
{ |
||||
defaultCost=_defaultCost; |
||||
} |
||||
|
||||
float getDefaultCost() const |
||||
{ |
||||
return defaultCost; |
||||
} |
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << name_ |
||||
<< "dummies" << nDummies |
||||
<< "default" << defaultCost; |
||||
} |
||||
|
||||
virtual void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( (String)fn["name"] == name_ ); |
||||
nDummies = (int)fn["dummies"]; |
||||
defaultCost = (float)fn["default"]; |
||||
} |
||||
|
||||
protected: |
||||
String name_; |
||||
int nDummies; |
||||
float defaultCost; |
||||
}; |
||||
|
||||
void EMDL1HistogramCostExtractorImpl::buildCostMatrix(InputArray _descriptors1, InputArray _descriptors2, OutputArray _costMatrix) |
||||
{ |
||||
// size of the costMatrix with dummies //
|
||||
Mat descriptors1=_descriptors1.getMat(); |
||||
Mat descriptors2=_descriptors2.getMat(); |
||||
int costrows = std::max(descriptors1.rows, descriptors2.rows)+nDummies; |
||||
_costMatrix.create(costrows, costrows, CV_32F); |
||||
Mat costMatrix=_costMatrix.getMat(); |
||||
|
||||
// Obtain copies of the descriptors //
|
||||
cv::Mat scd1=descriptors1.clone(); |
||||
cv::Mat scd2=descriptors2.clone(); |
||||
|
||||
// row normalization //
|
||||
for(int i=0; i<scd1.rows; i++) |
||||
{ |
||||
cv::Mat row = scd1.row(i); |
||||
scd1.row(i)/=(sum(row)[0]+FLT_EPSILON); |
||||
} |
||||
for(int i=0; i<scd2.rows; i++) |
||||
{ |
||||
cv::Mat row = scd2.row(i); |
||||
scd2.row(i)/=(sum(row)[0]+FLT_EPSILON); |
||||
} |
||||
|
||||
// Compute the Cost Matrix //
|
||||
for(int i=0; i<costrows; i++) |
||||
{ |
||||
for(int j=0; j<costrows; j++) |
||||
{ |
||||
if (i<scd1.rows && j<scd2.rows) |
||||
{ |
||||
cv::Mat sig1(scd1.cols,1,CV_32F), sig2(scd2.cols,1,CV_32F); |
||||
sig1.col(0)=scd1.row(i).t(); |
||||
sig2.col(0)=scd2.row(j).t(); |
||||
costMatrix.at<float>(i,j) = cv::EMDL1(sig1, sig2); |
||||
} |
||||
else |
||||
{ |
||||
costMatrix.at<float>(i,j) = defaultCost; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
Ptr <HistogramCostExtractor> createEMDL1HistogramCostExtractor(int nDummies, float defaultCost) |
||||
{ |
||||
return Ptr <HistogramCostExtractor>( new EMDL1HistogramCostExtractorImpl(nDummies, defaultCost) ); |
||||
} |
||||
|
||||
} // cv
|
@ -0,0 +1,45 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
/* End of file. */ |
@ -0,0 +1,59 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_PRECOMP_H__ |
||||
#define __OPENCV_PRECOMP_H__ |
||||
|
||||
#include <vector> |
||||
#include <cmath> |
||||
#include <iostream> |
||||
|
||||
#include "opencv2/video/tracking.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/shape.hpp" |
||||
|
||||
#include "opencv2/core/utility.hpp" |
||||
#include "opencv2/core/private.hpp" |
||||
|
||||
#include "opencv2/opencv_modules.hpp" |
||||
|
||||
#endif |
@ -0,0 +1,781 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/*
|
||||
* Implementation of the paper Shape Matching and Object Recognition Using Shape Contexts |
||||
* Belongie et al., 2002 by Juan Manuel Perez for GSoC 2013. |
||||
*/ |
||||
#include "precomp.hpp" |
||||
#include "opencv2/core.hpp" |
||||
#include "scd_def.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
class ShapeContextDistanceExtractorImpl : public ShapeContextDistanceExtractor |
||||
{ |
||||
public: |
||||
/* Constructors */ |
||||
ShapeContextDistanceExtractorImpl(int _nAngularBins, int _nRadialBins, float _innerRadius, float _outerRadius, int _iterations, |
||||
const Ptr<HistogramCostExtractor> &_comparer, const Ptr<ShapeTransformer> &_transformer) |
||||
{ |
||||
nAngularBins=_nAngularBins; |
||||
nRadialBins=_nRadialBins; |
||||
innerRadius=_innerRadius; |
||||
outerRadius=_outerRadius; |
||||
rotationInvariant=false; |
||||
comparer=_comparer; |
||||
iterations=_iterations; |
||||
transformer=_transformer; |
||||
bendingEnergyWeight=0.3; |
||||
imageAppearanceWeight=0.0; |
||||
shapeContextWeight=1.0; |
||||
sigma=10; |
||||
name_ = "ShapeDistanceExtractor.SCD"; |
||||
} |
||||
|
||||
/* Destructor */ |
||||
~ShapeContextDistanceExtractorImpl() |
||||
{ |
||||
} |
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; } |
||||
|
||||
//! the main operator
|
||||
virtual float computeDistance(InputArray contour1, InputArray contour2); |
||||
|
||||
//! Setters/Getters
|
||||
virtual void setAngularBins(int _nAngularBins){CV_Assert(_nAngularBins>0); nAngularBins=_nAngularBins;} |
||||
virtual int getAngularBins() const {return nAngularBins;} |
||||
|
||||
virtual void setRadialBins(int _nRadialBins){CV_Assert(_nRadialBins>0); nRadialBins=_nRadialBins;} |
||||
virtual int getRadialBins() const {return nRadialBins;} |
||||
|
||||
virtual void setInnerRadius(float _innerRadius) {CV_Assert(_innerRadius>0); innerRadius=_innerRadius;} |
||||
virtual float getInnerRadius() const {return innerRadius;} |
||||
|
||||
virtual void setOuterRadius(float _outerRadius) {CV_Assert(_outerRadius>0); outerRadius=_outerRadius;} |
||||
virtual float getOuterRadius() const {return outerRadius;} |
||||
|
||||
virtual void setRotationInvariant(bool _rotationInvariant) {rotationInvariant=_rotationInvariant;} |
||||
virtual bool getRotationInvariant() const {return rotationInvariant;} |
||||
|
||||
virtual void setCostExtractor(Ptr<HistogramCostExtractor> _comparer) { comparer = _comparer; } |
||||
virtual Ptr<HistogramCostExtractor> getCostExtractor() const { return comparer; } |
||||
|
||||
virtual void setShapeContextWeight(float _shapeContextWeight) {shapeContextWeight=_shapeContextWeight;} |
||||
virtual float getShapeContextWeight() const {return shapeContextWeight;} |
||||
|
||||
virtual void setImageAppearanceWeight(float _imageAppearanceWeight) {imageAppearanceWeight=_imageAppearanceWeight;} |
||||
virtual float getImageAppearanceWeight() const {return imageAppearanceWeight;} |
||||
|
||||
virtual void setBendingEnergyWeight(float _bendingEnergyWeight) {bendingEnergyWeight=_bendingEnergyWeight;} |
||||
virtual float getBendingEnergyWeight() const {return bendingEnergyWeight;} |
||||
|
||||
virtual void setStdDev(float _sigma) {sigma=_sigma;} |
||||
virtual float getStdDev() const {return sigma;} |
||||
|
||||
virtual void setImages(InputArray _image1, InputArray _image2) |
||||
{ |
||||
Mat image1_=_image1.getMat(), image2_=_image2.getMat(); |
||||
CV_Assert((image1_.depth()==0) && (image2_.depth()==0)); |
||||
image1=image1_; |
||||
image2=image2_; |
||||
} |
||||
|
||||
virtual void getImages(OutputArray _image1, OutputArray _image2) const |
||||
{ |
||||
CV_Assert((!image1.empty()) && (!image2.empty())); |
||||
_image1.create(image1.size(), image1.type()); |
||||
_image2.create(image2.size(), image2.type()); |
||||
_image1.getMat()=image1; |
||||
_image2.getMat()=image2; |
||||
} |
||||
|
||||
virtual void setIterations(int _iterations) {CV_Assert(_iterations>0); iterations=_iterations;} |
||||
virtual int getIterations() const {return iterations;} |
||||
|
||||
virtual void setTransformAlgorithm(Ptr<ShapeTransformer> _transformer) {transformer=_transformer;} |
||||
virtual Ptr<ShapeTransformer> getTransformAlgorithm() const {return transformer;} |
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << name_ |
||||
<< "nRads" << nRadialBins |
||||
<< "nAngs" << nAngularBins |
||||
<< "iters" << iterations |
||||
<< "img_1" << image1 |
||||
<< "img_2" << image2 |
||||
<< "beWei" << bendingEnergyWeight |
||||
<< "scWei" << shapeContextWeight |
||||
<< "iaWei" << imageAppearanceWeight |
||||
<< "costF" << costFlag |
||||
<< "rotIn" << rotationInvariant |
||||
<< "sigma" << sigma; |
||||
} |
||||
|
||||
virtual void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( (String)fn["name"] == name_ ); |
||||
nRadialBins = (int)fn["nRads"]; |
||||
nAngularBins = (int)fn["nAngs"]; |
||||
iterations = (int)fn["iters"]; |
||||
bendingEnergyWeight = (float)fn["beWei"]; |
||||
shapeContextWeight = (float)fn["scWei"]; |
||||
imageAppearanceWeight = (float)fn["iaWei"]; |
||||
costFlag = (int)fn["costF"]; |
||||
sigma = (float)fn["sigma"]; |
||||
} |
||||
|
||||
protected: |
||||
int nAngularBins; |
||||
int nRadialBins; |
||||
float innerRadius; |
||||
float outerRadius; |
||||
bool rotationInvariant; |
||||
int costFlag; |
||||
int iterations; |
||||
Ptr<ShapeTransformer> transformer; |
||||
Ptr<HistogramCostExtractor> comparer; |
||||
Mat image1; |
||||
Mat image2; |
||||
float bendingEnergyWeight; |
||||
float imageAppearanceWeight; |
||||
float shapeContextWeight; |
||||
float sigma; |
||||
String name_; |
||||
}; |
||||
|
||||
float ShapeContextDistanceExtractorImpl::computeDistance(InputArray contour1, InputArray contour2) |
||||
{ |
||||
// Checking //
|
||||
Mat sset1=contour1.getMat(), sset2=contour2.getMat(), set1, set2; |
||||
if (set1.type() != CV_32F) |
||||
sset1.convertTo(set1, CV_32F); |
||||
else |
||||
sset1.copyTo(set1); |
||||
|
||||
if (set2.type() != CV_32F) |
||||
sset2.convertTo(set2, CV_32F); |
||||
else |
||||
sset1.copyTo(set2); |
||||
|
||||
CV_Assert((set1.channels()==2) && (set1.cols>0)); |
||||
CV_Assert((set2.channels()==2) && (set2.cols>0)); |
||||
if (imageAppearanceWeight!=0) |
||||
{ |
||||
CV_Assert((!image1.empty()) && (!image2.empty())); |
||||
} |
||||
|
||||
// Initializing Extractor, Descriptor structures and Matcher //
|
||||
SCD set1SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant); |
||||
Mat set1SCD; |
||||
SCD set2SCE(nAngularBins, nRadialBins, innerRadius, outerRadius, rotationInvariant); |
||||
Mat set2SCD; |
||||
SCDMatcher matcher; |
||||
std::vector<DMatch> matches; |
||||
|
||||
// Distance components (The output is a linear combination of these 3) //
|
||||
float sDistance=0, bEnergy=0, iAppearance=0; |
||||
float beta; |
||||
|
||||
// Initializing some variables //
|
||||
std::vector<int> inliers1, inliers2; |
||||
|
||||
Ptr<ThinPlateSplineShapeTransformer> transDown = transformer.dynamicCast<ThinPlateSplineShapeTransformer>(); |
||||
|
||||
Mat warpedImage; |
||||
int ii, jj, pt; |
||||
|
||||
for (ii=0; ii<iterations; ii++) |
||||
{ |
||||
// Extract SCD descriptor in the set1 //
|
||||
set1SCE.extractSCD(set1, set1SCD, inliers1); |
||||
|
||||
// Extract SCD descriptor of the set2 (TARGET) //
|
||||
set2SCE.extractSCD(set2, set2SCD, inliers2, set1SCE.getMeanDistance()); |
||||
|
||||
// regularization parameter with annealing rate annRate //
|
||||
beta=set1SCE.getMeanDistance(); |
||||
beta *= beta; |
||||
|
||||
// match //
|
||||
matcher.matchDescriptors(set1SCD, set2SCD, matches, comparer, inliers1, inliers2); |
||||
|
||||
// apply TPS transform //
|
||||
if ( !transDown.empty() ) |
||||
transDown->setRegularizationParameter(beta); |
||||
transformer->estimateTransformation(set1, set2, matches); |
||||
bEnergy += transformer->applyTransformation(set1, set1); |
||||
|
||||
// Image appearance //
|
||||
if (imageAppearanceWeight!=0) |
||||
{ |
||||
// Have to accumulate the transformation along all the iterations
|
||||
if (ii==0) |
||||
{ |
||||
if ( !transDown.empty() ) |
||||
{ |
||||
image2.copyTo(warpedImage); |
||||
} |
||||
else |
||||
{ |
||||
image1.copyTo(warpedImage); |
||||
} |
||||
} |
||||
transformer->warpImage(warpedImage, warpedImage); |
||||
} |
||||
} |
||||
|
||||
Mat gaussWindow, diffIm; |
||||
if (imageAppearanceWeight!=0) |
||||
{ |
||||
// compute appearance cost
|
||||
if ( !transDown.empty() ) |
||||
{ |
||||
resize(warpedImage, warpedImage, image1.size()); |
||||
Mat temp=(warpedImage-image1); |
||||
multiply(temp, temp, diffIm); |
||||
} |
||||
else |
||||
{ |
||||
resize(warpedImage, warpedImage, image2.size()); |
||||
Mat temp=(warpedImage-image2); |
||||
multiply(temp, temp, diffIm); |
||||
} |
||||
gaussWindow = Mat::zeros(warpedImage.rows, warpedImage.cols, CV_32F); |
||||
for (pt=0; pt<sset1.cols; pt++) |
||||
{ |
||||
Point2f p = sset1.at<Point2f>(0,pt); |
||||
for (ii=0; ii<diffIm.rows; ii++) |
||||
{ |
||||
for (jj=0; jj<diffIm.cols; jj++) |
||||
{ |
||||
float val = float(std::exp( -float( (p.x-jj)*(p.x-jj) + (p.y-ii)*(p.y-ii) )/(2*sigma*sigma) ) / (sigma*sigma*2*CV_PI)); |
||||
gaussWindow.at<float>(ii,jj) += val; |
||||
} |
||||
} |
||||
} |
||||
|
||||
Mat appIm(diffIm.rows, diffIm.cols, CV_32F); |
||||
for (ii=0; ii<diffIm.rows; ii++) |
||||
{ |
||||
for (jj=0; jj<diffIm.cols; jj++) |
||||
{ |
||||
float elema=float( diffIm.at<uchar>(ii,jj) )/255; |
||||
float elemb=gaussWindow.at<float>(ii,jj); |
||||
appIm.at<float>(ii,jj) = elema*elemb; |
||||
} |
||||
} |
||||
iAppearance = float(cv::sum(appIm)[0]/sset1.cols); |
||||
} |
||||
sDistance = matcher.getMatchingCost(); |
||||
|
||||
return (sDistance*shapeContextWeight+bEnergy*bendingEnergyWeight+iAppearance*imageAppearanceWeight); |
||||
} |
||||
|
||||
Ptr <ShapeContextDistanceExtractor> createShapeContextDistanceExtractor(int nAngularBins, int nRadialBins, float innerRadius, float outerRadius, int iterations, |
||||
const Ptr<HistogramCostExtractor> &comparer, const Ptr<ShapeTransformer> &transformer) |
||||
{ |
||||
return Ptr <ShapeContextDistanceExtractor> ( new ShapeContextDistanceExtractorImpl(nAngularBins, nRadialBins, innerRadius, |
||||
outerRadius, iterations, comparer, transformer) ); |
||||
} |
||||
|
||||
//! SCD
|
||||
void SCD::extractSCD(cv::Mat &contour, cv::Mat &descriptors, const std::vector<int> &queryInliers, const float _meanDistance) |
||||
{ |
||||
cv::Mat contourMat = contour; |
||||
cv::Mat disMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F); |
||||
cv::Mat angleMatrix = cv::Mat::zeros(contourMat.cols, contourMat.cols, CV_32F); |
||||
|
||||
std::vector<double> logspaces, angspaces; |
||||
logarithmicSpaces(logspaces); |
||||
angularSpaces(angspaces); |
||||
buildNormalizedDistanceMatrix(contourMat, disMatrix, queryInliers, _meanDistance); |
||||
buildAngleMatrix(contourMat, angleMatrix); |
||||
|
||||
// Now, build the descriptor matrix (each row is a point) //
|
||||
descriptors = cv::Mat::zeros(contourMat.cols, descriptorSize(), CV_32F); |
||||
|
||||
for (int ptidx=0; ptidx<contourMat.cols; ptidx++) |
||||
{ |
||||
for (int cmp=0; cmp<contourMat.cols; cmp++) |
||||
{ |
||||
if (ptidx==cmp) continue; |
||||
if ((int)queryInliers.size()>0) |
||||
{ |
||||
if (queryInliers[ptidx]==0 || queryInliers[cmp]==0) continue; //avoid outliers
|
||||
} |
||||
|
||||
int angidx=-1, radidx=-1; |
||||
for (int i=0; i<nRadialBins; i++) |
||||
{ |
||||
if (disMatrix.at<float>(ptidx, cmp)<logspaces[i]) |
||||
{ |
||||
radidx=i; |
||||
break; |
||||
} |
||||
} |
||||
for (int i=0; i<nAngularBins; i++) |
||||
{ |
||||
if (angleMatrix.at<float>(ptidx, cmp)<angspaces[i]) |
||||
{ |
||||
angidx=i; |
||||
break; |
||||
} |
||||
} |
||||
if (angidx!=-1 && radidx!=-1) |
||||
{ |
||||
int idx = angidx+radidx*nAngularBins; |
||||
descriptors.at<float>(ptidx, idx)++; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void SCD::logarithmicSpaces(std::vector<double> &vecSpaces) const |
||||
{ |
||||
double logmin=log10(innerRadius); |
||||
double logmax=log10(outerRadius); |
||||
double delta=(logmax-logmin)/(nRadialBins-1); |
||||
double accdelta=0; |
||||
|
||||
for (int i=0; i<nRadialBins; i++) |
||||
{ |
||||
double val = std::pow(10,logmin+accdelta); |
||||
vecSpaces.push_back(val); |
||||
accdelta += delta; |
||||
} |
||||
} |
||||
|
||||
void SCD::angularSpaces(std::vector<double> &vecSpaces) const |
||||
{ |
||||
double delta=2*CV_PI/nAngularBins; |
||||
double val=0; |
||||
|
||||
for (int i=0; i<nAngularBins; i++) |
||||
{ |
||||
val += delta; |
||||
vecSpaces.push_back(val); |
||||
} |
||||
} |
||||
|
||||
void SCD::buildNormalizedDistanceMatrix(cv::Mat &contour, cv::Mat &disMatrix, const std::vector<int> &queryInliers, const float _meanDistance) |
||||
{ |
||||
cv::Mat contourMat = contour; |
||||
cv::Mat mask(disMatrix.rows, disMatrix.cols, CV_8U); |
||||
|
||||
for (int i=0; i<contourMat.cols; i++) |
||||
{ |
||||
for (int j=0; j<contourMat.cols; j++) |
||||
{ |
||||
disMatrix.at<float>(i,j) = (float)norm( cv::Mat(contourMat.at<cv::Point2f>(0,i)-contourMat.at<cv::Point2f>(0,j)), cv::NORM_L2 ); |
||||
if (_meanDistance<0) |
||||
{ |
||||
if (queryInliers.size()>0) |
||||
{ |
||||
mask.at<char>(i,j)=char(queryInliers[j] && queryInliers[i]); |
||||
} |
||||
else |
||||
{ |
||||
mask.at<char>(i,j)=1; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (_meanDistance<0) |
||||
{ |
||||
meanDistance=(float)mean(disMatrix, mask)[0]; |
||||
} |
||||
else |
||||
{ |
||||
meanDistance=_meanDistance; |
||||
} |
||||
disMatrix/=meanDistance+FLT_EPSILON; |
||||
} |
||||
|
||||
void SCD::buildAngleMatrix(cv::Mat &contour, cv::Mat &angleMatrix) const |
||||
{ |
||||
cv::Mat contourMat = contour; |
||||
|
||||
// if descriptor is rotationInvariant compute massCenter //
|
||||
cv::Point2f massCenter(0,0); |
||||
if (rotationInvariant) |
||||
{ |
||||
for (int i=0; i<contourMat.cols; i++) |
||||
{ |
||||
massCenter+=contourMat.at<cv::Point2f>(0,i); |
||||
} |
||||
massCenter.x=massCenter.x/(float)contourMat.cols; |
||||
massCenter.y=massCenter.y/(float)contourMat.cols; |
||||
} |
||||
|
||||
|
||||
for (int i=0; i<contourMat.cols; i++) |
||||
{ |
||||
for (int j=0; j<contourMat.cols; j++) |
||||
{ |
||||
if (i==j) |
||||
{ |
||||
angleMatrix.at<float>(i,j)=0.0; |
||||
} |
||||
else |
||||
{ |
||||
cv::Point2f dif = contourMat.at<cv::Point2f>(0,i) - contourMat.at<cv::Point2f>(0,j); |
||||
angleMatrix.at<float>(i,j) = std::atan2(dif.y, dif.x); |
||||
|
||||
if (rotationInvariant) |
||||
{ |
||||
cv::Point2f refPt = contourMat.at<cv::Point2f>(0,i) - massCenter; |
||||
float refAngle = atan2(refPt.y, refPt.x); |
||||
angleMatrix.at<float>(i,j) -= refAngle; |
||||
} |
||||
angleMatrix.at<float>(i,j) = float(fmod(double(angleMatrix.at<float>(i,j)+(double)FLT_EPSILON),2*CV_PI)+CV_PI); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
//! SCDMatcher
|
||||
void SCDMatcher::matchDescriptors(cv::Mat &descriptors1, cv::Mat &descriptors2, std::vector<cv::DMatch> &matches, |
||||
cv::Ptr<cv::HistogramCostExtractor> &comparer, std::vector<int> &inliers1, std::vector<int> &inliers2) |
||||
{ |
||||
matches.clear(); |
||||
|
||||
// Build the cost Matrix between descriptors //
|
||||
cv::Mat costMat; |
||||
buildCostMatrix(descriptors1, descriptors2, costMat, comparer); |
||||
|
||||
// Solve the matching problem using the hungarian method //
|
||||
hungarian(costMat, matches, inliers1, inliers2, descriptors1.rows, descriptors2.rows); |
||||
} |
||||
|
||||
void SCDMatcher::buildCostMatrix(const cv::Mat &descriptors1, const cv::Mat &descriptors2, |
||||
cv::Mat &costMatrix, cv::Ptr<cv::HistogramCostExtractor> &comparer) const |
||||
{ |
||||
comparer->buildCostMatrix(descriptors1, descriptors2, costMatrix); |
||||
} |
||||
|
||||
void SCDMatcher::hungarian(cv::Mat &costMatrix, std::vector<cv::DMatch> &outMatches, std::vector<int> &inliers1, |
||||
std::vector<int> &inliers2, int sizeScd1, int sizeScd2) |
||||
{ |
||||
std::vector<int> free(costMatrix.rows, 0), collist(costMatrix.rows, 0); |
||||
std::vector<int> matches(costMatrix.rows, 0), colsol(costMatrix.rows), rowsol(costMatrix.rows); |
||||
std::vector<float> d(costMatrix.rows), pred(costMatrix.rows), v(costMatrix.rows); |
||||
|
||||
const float LOWV=1e-10; |
||||
bool unassignedfound; |
||||
int i=0, imin=0, numfree=0, prvnumfree=0, f=0, i0=0, k=0, freerow=0; |
||||
int j=0, j1=0, j2=0, endofpath=0, last=0, low=0, up=0; |
||||
float min=0, h=0, umin=0, usubmin=0, v2=0; |
||||
|
||||
// COLUMN REDUCTION //
|
||||
for (j = costMatrix.rows-1; j >= 0; j--) |
||||
{ |
||||
// find minimum cost over rows.
|
||||
min = costMatrix.at<float>(0,j); |
||||
imin = 0; |
||||
for (i = 1; i < costMatrix.rows; i++) |
||||
if (costMatrix.at<float>(i,j) < min) |
||||
{ |
||||
min = costMatrix.at<float>(i,j); |
||||
imin = i; |
||||
} |
||||
v[j] = min; |
||||
|
||||
if (++matches[imin] == 1) |
||||
{ |
||||
rowsol[imin] = j; |
||||
colsol[j] = imin; |
||||
} |
||||
else |
||||
{ |
||||
colsol[j]=-1; |
||||
} |
||||
} |
||||
|
||||
// REDUCTION TRANSFER //
|
||||
for (i=0; i<costMatrix.rows; i++) |
||||
{ |
||||
if (matches[i] == 0) |
||||
{ |
||||
free[numfree++] = i; |
||||
} |
||||
else |
||||
{ |
||||
if (matches[i] == 1) |
||||
{ |
||||
j1=rowsol[i]; |
||||
min=std::numeric_limits<float>::max(); |
||||
for (j=0; j<costMatrix.rows; j++) |
||||
{ |
||||
if (j!=j1) |
||||
{ |
||||
if (costMatrix.at<float>(i,j)-v[j] < min) |
||||
{ |
||||
min=costMatrix.at<float>(i,j)-v[j]; |
||||
} |
||||
} |
||||
} |
||||
v[j1] = v[j1]-min; |
||||
} |
||||
} |
||||
} |
||||
// AUGMENTING ROW REDUCTION //
|
||||
int loopcnt = 0; |
||||
do |
||||
{ |
||||
loopcnt++; |
||||
k=0; |
||||
prvnumfree=numfree; |
||||
numfree=0; |
||||
while (k < prvnumfree) |
||||
{ |
||||
i=free[k]; |
||||
k++; |
||||
umin = costMatrix.at<float>(i,0)-v[0]; |
||||
j1=0; |
||||
usubmin = std::numeric_limits<float>::max(); |
||||
for (j=1; j<costMatrix.rows; j++) |
||||
{ |
||||
h = costMatrix.at<float>(i,j)-v[j]; |
||||
if (h < usubmin) |
||||
{ |
||||
if (h >= umin) |
||||
{ |
||||
usubmin = h; |
||||
j2 = j; |
||||
} |
||||
else |
||||
{ |
||||
usubmin = umin; |
||||
umin = h; |
||||
j2 = j1; |
||||
j1 = j; |
||||
} |
||||
} |
||||
} |
||||
i0 = colsol[j1]; |
||||
|
||||
if (fabs(umin-usubmin) > LOWV) //if( umin < usubmin )
|
||||
{ |
||||
v[j1] = v[j1] - (usubmin - umin); |
||||
} |
||||
else // minimum and subminimum equal.
|
||||
{ |
||||
if (i0 >= 0) // minimum column j1 is assigned.
|
||||
{ |
||||
j1 = j2; |
||||
i0 = colsol[j2]; |
||||
} |
||||
} |
||||
// (re-)assign i to j1, possibly de-assigning an i0.
|
||||
rowsol[i]=j1; |
||||
colsol[j1]=i; |
||||
|
||||
if (i0 >= 0) |
||||
{ |
||||
//if( umin < usubmin )
|
||||
if (fabs(umin-usubmin) > LOWV) |
||||
{ |
||||
free[--k] = i0; |
||||
} |
||||
else |
||||
{ |
||||
free[numfree++] = i0; |
||||
} |
||||
} |
||||
} |
||||
}while (loopcnt<2); // repeat once.
|
||||
|
||||
// AUGMENT SOLUTION for each free row //
|
||||
for (f = 0; f<numfree; f++) |
||||
{ |
||||
freerow = free[f]; // start row of augmenting path.
|
||||
// Dijkstra shortest path algorithm.
|
||||
// runs until unassigned column added to shortest path tree.
|
||||
for (j = 0; j < costMatrix.rows; j++) |
||||
{ |
||||
d[j] = costMatrix.at<float>(freerow,j) - v[j]; |
||||
pred[j] = float(freerow); |
||||
collist[j] = j; // init column list.
|
||||
} |
||||
|
||||
low=0; // columns in 0..low-1 are ready, now none.
|
||||
up=0; // columns in low..up-1 are to be scanned for current minimum, now none.
|
||||
unassignedfound = false; |
||||
do |
||||
{ |
||||
if (up == low) |
||||
{ |
||||
last=low-1; |
||||
min = d[collist[up++]]; |
||||
for (k = up; k < costMatrix.rows; k++) |
||||
{ |
||||
j = collist[k]; |
||||
h = d[j]; |
||||
if (h <= min) |
||||
{ |
||||
if (h < min) // new minimum.
|
||||
{ |
||||
up = low; // restart list at index low.
|
||||
min = h; |
||||
} |
||||
collist[k] = collist[up]; |
||||
collist[up++] = j; |
||||
} |
||||
} |
||||
for (k=low; k<up; k++) |
||||
{ |
||||
if (colsol[collist[k]] < 0) |
||||
{ |
||||
endofpath = collist[k]; |
||||
unassignedfound = true; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (!unassignedfound) |
||||
{ |
||||
// update 'distances' between freerow and all unscanned columns, via next scanned column.
|
||||
j1 = collist[low]; |
||||
low++; |
||||
i = colsol[j1]; |
||||
h = costMatrix.at<float>(i,j1)-v[j1]-min; |
||||
|
||||
for (k = up; k < costMatrix.rows; k++) |
||||
{ |
||||
j = collist[k]; |
||||
v2 = costMatrix.at<float>(i,j) - v[j] - h; |
||||
if (v2 < d[j]) |
||||
{ |
||||
pred[j] = float(i); |
||||
if (v2 == min) |
||||
{ |
||||
if (colsol[j] < 0) |
||||
{ |
||||
// if unassigned, shortest augmenting path is complete.
|
||||
endofpath = j; |
||||
unassignedfound = true; |
||||
break; |
||||
} |
||||
else |
||||
{ |
||||
collist[k] = collist[up]; |
||||
collist[up++] = j; |
||||
} |
||||
} |
||||
d[j] = v2; |
||||
} |
||||
} |
||||
} |
||||
}while (!unassignedfound); |
||||
|
||||
// update column prices.
|
||||
for (k = 0; k <= last; k++) |
||||
{ |
||||
j1 = collist[k]; |
||||
v[j1] = v[j1] + d[j1] - min; |
||||
} |
||||
|
||||
// reset row and column assignments along the alternating path.
|
||||
do |
||||
{ |
||||
i = int(pred[endofpath]); |
||||
colsol[endofpath] = i; |
||||
j1 = endofpath; |
||||
endofpath = rowsol[i]; |
||||
rowsol[i] = j1; |
||||
}while (i != freerow); |
||||
} |
||||
|
||||
// calculate symmetric shape context cost
|
||||
cv::Mat trueCostMatrix(costMatrix, cv::Rect(0,0,sizeScd1, sizeScd2)); |
||||
float leftcost = 0; |
||||
for (int nrow=0; nrow<trueCostMatrix.rows; nrow++) |
||||
{ |
||||
double minval; |
||||
minMaxIdx(trueCostMatrix.row(nrow), &minval); |
||||
leftcost+=float(minval); |
||||
} |
||||
leftcost /= trueCostMatrix.rows; |
||||
|
||||
float rightcost = 0; |
||||
for (int ncol=0; ncol<trueCostMatrix.cols; ncol++) |
||||
{ |
||||
double minval; |
||||
minMaxIdx(trueCostMatrix.col(ncol), &minval); |
||||
rightcost+=float(minval); |
||||
} |
||||
rightcost /= trueCostMatrix.cols; |
||||
|
||||
minMatchCost = std::max(leftcost,rightcost); |
||||
|
||||
// Save in a DMatch vector
|
||||
for (i=0;i<costMatrix.cols;i++) |
||||
{ |
||||
cv::DMatch singleMatch(colsol[i],i,costMatrix.at<float>(colsol[i],i));//queryIdx,trainIdx,distance
|
||||
outMatches.push_back(singleMatch); |
||||
} |
||||
|
||||
// Update inliers
|
||||
inliers1.reserve(sizeScd1); |
||||
for (size_t kc = 0; kc<inliers1.size(); kc++) |
||||
{ |
||||
if (rowsol[kc]<sizeScd1) // if a real match
|
||||
inliers1[kc]=1; |
||||
else |
||||
inliers1[kc]=0; |
||||
} |
||||
inliers2.reserve(sizeScd2); |
||||
for (size_t kc = 0; kc<inliers2.size(); kc++) |
||||
{ |
||||
if (colsol[kc]<sizeScd2) // if a real match
|
||||
inliers2[kc]=1; |
||||
else |
||||
inliers2[kc]=0; |
||||
} |
||||
} |
||||
|
||||
} |
@ -0,0 +1,132 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <stdlib.h> |
||||
#include <math.h> |
||||
#include <vector> |
||||
|
||||
namespace cv |
||||
{ |
||||
/*
|
||||
* ShapeContextDescriptor class
|
||||
*/ |
||||
class SCD |
||||
{ |
||||
public: |
||||
//! the full constructor taking all the necessary parameters
|
||||
explicit SCD(int _nAngularBins=12, int _nRadialBins=5, |
||||
double _innerRadius=0.1, double _outerRadius=1, bool _rotationInvariant=false) |
||||
{ |
||||
setAngularBins(_nAngularBins); |
||||
setRadialBins(_nRadialBins); |
||||
setInnerRadius(_innerRadius); |
||||
setOuterRadius(_outerRadius); |
||||
setRotationInvariant(_rotationInvariant); |
||||
} |
||||
|
||||
void extractSCD(cv::Mat& contour, cv::Mat& descriptors, |
||||
const std::vector<int>& queryInliers=std::vector<int>(), |
||||
const float _meanDistance=-1); |
||||
|
||||
int descriptorSize() {return nAngularBins*nRadialBins;} |
||||
void setAngularBins(int angularBins) { nAngularBins=angularBins; } |
||||
void setRadialBins(int radialBins) { nRadialBins=radialBins; } |
||||
void setInnerRadius(double _innerRadius) { innerRadius=_innerRadius; } |
||||
void setOuterRadius(double _outerRadius) { outerRadius=_outerRadius; } |
||||
void setRotationInvariant(bool _rotationInvariant) { rotationInvariant=_rotationInvariant; } |
||||
int getAngularBins() const { return nAngularBins; } |
||||
int getRadialBins() const { return nRadialBins; } |
||||
double getInnerRadius() const { return innerRadius; } |
||||
double getOuterRadius() const { return outerRadius; } |
||||
bool getRotationInvariant() const { return rotationInvariant; } |
||||
float getMeanDistance() const { return meanDistance; } |
||||
|
||||
private: |
||||
int nAngularBins; |
||||
int nRadialBins; |
||||
double innerRadius; |
||||
double outerRadius; |
||||
bool rotationInvariant; |
||||
float meanDistance; |
||||
|
||||
protected: |
||||
void logarithmicSpaces(std::vector<double>& vecSpaces) const; |
||||
void angularSpaces(std::vector<double>& vecSpaces) const; |
||||
|
||||
void buildNormalizedDistanceMatrix(cv::Mat& contour, |
||||
cv::Mat& disMatrix, const std::vector<int> &queryInliers, |
||||
const float _meanDistance=-1); |
||||
|
||||
void buildAngleMatrix(cv::Mat& contour, |
||||
cv::Mat& angleMatrix) const; |
||||
}; |
||||
|
||||
/*
|
||||
* Matcher |
||||
*/ |
||||
class SCDMatcher |
||||
{ |
||||
public: |
||||
// the full constructor
|
||||
SCDMatcher() |
||||
{ |
||||
} |
||||
|
||||
// the matcher function using Hungarian method
|
||||
void matchDescriptors(cv::Mat& descriptors1, cv::Mat& descriptors2, std::vector<cv::DMatch>& matches, cv::Ptr<cv::HistogramCostExtractor>& comparer, |
||||
std::vector<int>& inliers1, std::vector<int> &inliers2); |
||||
|
||||
// matching cost
|
||||
float getMatchingCost() const {return minMatchCost;} |
||||
|
||||
private: |
||||
float minMatchCost; |
||||
float betaAdditional; |
||||
protected: |
||||
void buildCostMatrix(const cv::Mat& descriptors1, const cv::Mat& descriptors2, |
||||
cv::Mat& costMatrix, cv::Ptr<cv::HistogramCostExtractor>& comparer) const; |
||||
void hungarian(cv::Mat& costMatrix, std::vector<cv::DMatch>& outMatches, std::vector<int> &inliers1, |
||||
std::vector<int> &inliers2, int sizeScd1=0, int sizeScd2=0); |
||||
|
||||
}; |
||||
|
||||
} |
@ -0,0 +1,288 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
namespace cv |
||||
{ |
||||
|
||||
class ThinPlateSplineShapeTransformerImpl : public ThinPlateSplineShapeTransformer |
||||
{ |
||||
public: |
||||
/* Constructors */ |
||||
ThinPlateSplineShapeTransformerImpl() |
||||
{ |
||||
regularizationParameter=0; |
||||
name_ = "ShapeTransformer.TPS"; |
||||
tpsComputed=false; |
||||
} |
||||
|
||||
ThinPlateSplineShapeTransformerImpl(double _regularizationParameter) |
||||
{ |
||||
regularizationParameter=_regularizationParameter; |
||||
name_ = "ShapeTransformer.TPS"; |
||||
tpsComputed=false; |
||||
} |
||||
|
||||
/* Destructor */ |
||||
~ThinPlateSplineShapeTransformerImpl() |
||||
{ |
||||
} |
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; } |
||||
|
||||
//! the main operators
|
||||
virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches); |
||||
virtual float applyTransformation(InputArray inPts, OutputArray output=noArray()); |
||||
virtual void warpImage(InputArray transformingImage, OutputArray output, |
||||
int flags, int borderMode, const Scalar& borderValue) const; |
||||
|
||||
//! Setters/Getters
|
||||
virtual void setRegularizationParameter(double _regularizationParameter) {regularizationParameter=_regularizationParameter;} |
||||
virtual double getRegularizationParameter() const {return regularizationParameter;} |
||||
|
||||
//! write/read
|
||||
virtual void write(FileStorage& fs) const |
||||
{ |
||||
fs << "name" << name_ |
||||
<< "regularization" << regularizationParameter; |
||||
} |
||||
|
||||
virtual void read(const FileNode& fn) |
||||
{ |
||||
CV_Assert( (String)fn["name"] == name_ ); |
||||
regularizationParameter = (int)fn["regularization"]; |
||||
} |
||||
|
||||
private: |
||||
bool tpsComputed; |
||||
double regularizationParameter; |
||||
float transformCost; |
||||
Mat tpsParameters; |
||||
Mat shapeReference; |
||||
|
||||
protected: |
||||
String name_; |
||||
}; |
||||
|
||||
static float distance(Point2f p, Point2f q) |
||||
{ |
||||
Point2f diff = p - q; |
||||
float norma = diff.x*diff.x + diff.y*diff.y;// - 2*diff.x*diff.y;
|
||||
if (norma<0) norma=0; |
||||
//else norma = std::sqrt(norma);
|
||||
norma = norma*std::log(norma+FLT_EPSILON); |
||||
return norma; |
||||
} |
||||
|
||||
static Point2f _applyTransformation(const Mat &shapeRef, const Point2f point, const Mat &tpsParameters) |
||||
{ |
||||
Point2f out; |
||||
for (int i=0; i<2; i++) |
||||
{ |
||||
float a1=tpsParameters.at<float>(tpsParameters.rows-3,i); |
||||
float ax=tpsParameters.at<float>(tpsParameters.rows-2,i); |
||||
float ay=tpsParameters.at<float>(tpsParameters.rows-1,i); |
||||
|
||||
float affine=a1+ax*point.x+ay*point.y; |
||||
float nonrigid=0; |
||||
for (int j=0; j<shapeRef.rows; j++) |
||||
{ |
||||
nonrigid+=tpsParameters.at<float>(j,i)* |
||||
distance(Point2f(shapeRef.at<float>(j,0),shapeRef.at<float>(j,1)), |
||||
point); |
||||
} |
||||
if (i==0) |
||||
{ |
||||
out.x=affine+nonrigid; |
||||
} |
||||
if (i==1) |
||||
{ |
||||
out.y=affine+nonrigid; |
||||
} |
||||
} |
||||
return out; |
||||
} |
||||
|
||||
/* public methods */ |
||||
void ThinPlateSplineShapeTransformerImpl::warpImage(InputArray transformingImage, OutputArray output, |
||||
int flags, int borderMode, const Scalar& borderValue) const |
||||
{ |
||||
CV_Assert(tpsComputed==true); |
||||
|
||||
Mat theinput = transformingImage.getMat(); |
||||
Mat mapX(theinput.rows, theinput.cols, CV_32FC1); |
||||
Mat mapY(theinput.rows, theinput.cols, CV_32FC1); |
||||
|
||||
for (int row = 0; row < theinput.rows; row++) |
||||
{ |
||||
for (int col = 0; col < theinput.cols; col++) |
||||
{ |
||||
Point2f pt = _applyTransformation(shapeReference, Point2f(float(col), float(row)), tpsParameters); |
||||
mapX.at<float>(row, col) = pt.x; |
||||
mapY.at<float>(row, col) = pt.y; |
||||
} |
||||
} |
||||
remap(transformingImage, output, mapX, mapY, flags, borderMode, borderValue); |
||||
} |
||||
|
||||
float ThinPlateSplineShapeTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts) |
||||
{ |
||||
CV_Assert(tpsComputed); |
||||
Mat pts1 = inPts.getMat(); |
||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0)); |
||||
|
||||
//Apply transformation in the complete set of points
|
||||
// Ensambling output //
|
||||
if (outPts.needed()) |
||||
{ |
||||
outPts.create(1,pts1.cols, CV_32FC2); |
||||
Mat outMat = outPts.getMat(); |
||||
for (int i=0; i<pts1.cols; i++) |
||||
{ |
||||
Point2f pt=pts1.at<Point2f>(0,i); |
||||
outMat.at<Point2f>(0,i)=_applyTransformation(shapeReference, pt, tpsParameters); |
||||
} |
||||
} |
||||
|
||||
return transformCost; |
||||
} |
||||
|
||||
void ThinPlateSplineShapeTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2, |
||||
std::vector<DMatch>& _matches ) |
||||
{ |
||||
Mat pts1 = _pts1.getMat(); |
||||
Mat pts2 = _pts2.getMat(); |
||||
CV_Assert((pts1.channels()==2) && (pts1.cols>0) && (pts2.channels()==2) && (pts2.cols>0)); |
||||
CV_Assert(_matches.size()>1); |
||||
|
||||
if (pts1.type() != CV_32F) |
||||
pts1.convertTo(pts1, CV_32F); |
||||
if (pts2.type() != CV_32F) |
||||
pts2.convertTo(pts2, CV_32F); |
||||
|
||||
// Use only valid matchings //
|
||||
std::vector<DMatch> matches; |
||||
for (size_t i=0; i<_matches.size(); i++) |
||||
{ |
||||
if (_matches[i].queryIdx<pts1.cols && |
||||
_matches[i].trainIdx<pts2.cols) |
||||
{ |
||||
matches.push_back(_matches[i]); |
||||
} |
||||
} |
||||
|
||||
// Organizing the correspondent points in matrix style //
|
||||
Mat shape1(matches.size(),2,CV_32F); // transforming shape
|
||||
Mat shape2(matches.size(),2,CV_32F); // target shape
|
||||
for (size_t i=0; i<matches.size(); i++) |
||||
{ |
||||
Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx); |
||||
shape1.at<float>(i,0) = pt1.x; |
||||
shape1.at<float>(i,1) = pt1.y; |
||||
|
||||
Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx); |
||||
shape2.at<float>(i,0) = pt2.x; |
||||
shape2.at<float>(i,1) = pt2.y; |
||||
} |
||||
shape1.copyTo(shapeReference); |
||||
|
||||
// Building the matrices for solving the L*(w|a)=(v|0) problem with L={[K|P];[P'|0]}
|
||||
|
||||
//Building K and P (Neede to buil L)
|
||||
Mat matK(matches.size(),matches.size(),CV_32F); |
||||
Mat matP(matches.size(),3,CV_32F); |
||||
for (size_t i=0; i<matches.size(); i++) |
||||
{ |
||||
for (size_t j=0; j<matches.size(); j++) |
||||
{ |
||||
if (i==j) |
||||
{ |
||||
matK.at<float>(i,j)=float(regularizationParameter); |
||||
} |
||||
else |
||||
{ |
||||
matK.at<float>(i,j) = distance(Point2f(shape1.at<float>(i,0),shape1.at<float>(i,1)), |
||||
Point2f(shape1.at<float>(j,0),shape1.at<float>(j,1))); |
||||
} |
||||
} |
||||
matP.at<float>(i,0) = 1; |
||||
matP.at<float>(i,1) = shape1.at<float>(i,0); |
||||
matP.at<float>(i,2) = shape1.at<float>(i,1); |
||||
} |
||||
|
||||
//Building L
|
||||
Mat matL=Mat::zeros(matches.size()+3,matches.size()+3,CV_32F); |
||||
Mat matLroi(matL, Rect(0,0,matches.size(),matches.size())); //roi for K
|
||||
matK.copyTo(matLroi); |
||||
matLroi = Mat(matL,Rect(matches.size(),0,3,matches.size())); //roi for P
|
||||
matP.copyTo(matLroi); |
||||
Mat matPt; |
||||
transpose(matP,matPt); |
||||
matLroi = Mat(matL,Rect(0,matches.size(),matches.size(),3)); //roi for P'
|
||||
matPt.copyTo(matLroi); |
||||
|
||||
//Building B (v|0)
|
||||
Mat matB = Mat::zeros(matches.size()+3,2,CV_32F); |
||||
for (size_t i=0; i<matches.size(); i++) |
||||
{ |
||||
matB.at<float>(i,0) = shape2.at<float>(i,0); //x's
|
||||
matB.at<float>(i,1) = shape2.at<float>(i,1); //y's
|
||||
} |
||||
|
||||
//Obtaining transformation params (w|a)
|
||||
solve(matL, matB, tpsParameters, DECOMP_LU); |
||||
//tpsParameters = matL.inv()*matB;
|
||||
|
||||
//Setting transform Cost and Shape reference
|
||||
Mat w(tpsParameters, Rect(0,0,2,tpsParameters.rows-3)); |
||||
Mat Q=w.t()*matK*w; |
||||
transformCost=fabs(Q.at<float>(0,0)*Q.at<float>(1,1));//fabs(mean(Q.diag(0))[0]);//std::max(Q.at<float>(0,0),Q.at<float>(1,1));
|
||||
tpsComputed=true; |
||||
} |
||||
|
||||
Ptr <ThinPlateSplineShapeTransformer> createThinPlateSplineShapeTransformer(double regularizationParameter) |
||||
{ |
||||
return Ptr<ThinPlateSplineShapeTransformer>( new ThinPlateSplineShapeTransformerImpl(regularizationParameter) ); |
||||
} |
||||
|
||||
} // cv
|
@ -0,0 +1,266 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
const int angularBins=12; |
||||
const int radialBins=4; |
||||
const float minRad=0.2; |
||||
const float maxRad=2; |
||||
const int NSN=5;//10;//20; //number of shapes per class
|
||||
const int NP=100; //number of points sympliying the contour
|
||||
const float outlierWeight=0.1; |
||||
const int numOutliers=20; |
||||
const float CURRENT_MAX_ACCUR=95; //98% and 99% reached in several tests, 95 is fixed as minimum boundary
|
||||
|
||||
class CV_ShapeEMDTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_ShapeEMDTest(); |
||||
~CV_ShapeEMDTest(); |
||||
protected: |
||||
void run(int); |
||||
|
||||
private: |
||||
void mpegTest(); |
||||
void listShapeNames(vector<string> &listHeaders); |
||||
vector<Point2f> convertContourType(const Mat &, int n=0 ); |
||||
float computeShapeDistance(vector <Point2f>& queryNormal, |
||||
vector <Point2f>& queryFlipped1, |
||||
vector <Point2f>& queryFlipped2, |
||||
vector<Point2f>& testq); |
||||
void displayMPEGResults(); |
||||
}; |
||||
|
||||
CV_ShapeEMDTest::CV_ShapeEMDTest() |
||||
{ |
||||
} |
||||
CV_ShapeEMDTest::~CV_ShapeEMDTest() |
||||
{ |
||||
} |
||||
|
||||
vector <Point2f> CV_ShapeEMDTest::convertContourType(const Mat& currentQuery, int n) |
||||
{ |
||||
vector<vector<Point> > _contoursQuery; |
||||
vector <Point2f> contoursQuery; |
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
||||
for (size_t border=0; border<_contoursQuery.size(); border++) |
||||
{ |
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
||||
{ |
||||
contoursQuery.push_back(Point2f((float)_contoursQuery[border][p].x, |
||||
(float)_contoursQuery[border][p].y)); |
||||
} |
||||
} |
||||
|
||||
// In case actual number of points is less than n
|
||||
int dum=0; |
||||
for (int add=contoursQuery.size()-1; add<n; add++) |
||||
{ |
||||
contoursQuery.push_back(contoursQuery[dum++]); //adding dummy values
|
||||
} |
||||
|
||||
// Uniformly sampling
|
||||
random_shuffle(contoursQuery.begin(), contoursQuery.end()); |
||||
int nStart=n; |
||||
vector<Point2f> cont; |
||||
for (int i=0; i<nStart; i++) |
||||
{ |
||||
cont.push_back(contoursQuery[i]); |
||||
} |
||||
return cont; |
||||
} |
||||
|
||||
void CV_ShapeEMDTest::listShapeNames( vector<string> &listHeaders) |
||||
{ |
||||
listHeaders.push_back("apple"); //ok
|
||||
listHeaders.push_back("children"); // ok
|
||||
listHeaders.push_back("device7"); // ok
|
||||
listHeaders.push_back("Heart"); // ok
|
||||
listHeaders.push_back("teddy"); // ok
|
||||
} |
||||
float CV_ShapeEMDTest::computeShapeDistance(vector <Point2f>& query1, vector <Point2f>& query2, |
||||
vector <Point2f>& query3, vector <Point2f>& testq) |
||||
{ |
||||
//waitKey(0);
|
||||
Ptr <ShapeContextDistanceExtractor> mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad); |
||||
//Ptr <HistogramCostExtractor> cost = createNormHistogramCostExtractor(cv::DIST_L1);
|
||||
//Ptr <HistogramCostExtractor> cost = createChiHistogramCostExtractor(30,0.15);
|
||||
//Ptr <HistogramCostExtractor> cost = createEMDHistogramCostExtractor();
|
||||
// Ptr <HistogramCostExtractor> cost = createEMDL1HistogramCostExtractor();
|
||||
mysc->setIterations(1); //(3)
|
||||
mysc->setCostExtractor( createEMDL1HistogramCostExtractor() ); |
||||
//mysc->setTransformAlgorithm(createAffineTransformer(true));
|
||||
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() ); |
||||
//mysc->setImageAppearanceWeight(1.6);
|
||||
//mysc->setImageAppearanceWeight(0.0);
|
||||
//mysc->setImages(im1,imtest);
|
||||
return ( std::min( mysc->computeDistance(query1, testq), |
||||
std::min(mysc->computeDistance(query2, testq), mysc->computeDistance(query3, testq) ))); |
||||
} |
||||
|
||||
void CV_ShapeEMDTest::mpegTest() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
string path = cvtest::TS::ptr()->get_data_path() + baseTestFolder; |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// distance matrix //
|
||||
Mat distanceMat=Mat::zeros(NSN*namesHeaders.size(), NSN*namesHeaders.size(), CV_32F); |
||||
|
||||
// query contours (normal v flipped, h flipped) and testing contour //
|
||||
vector<Point2f> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; |
||||
|
||||
// reading query and computing its properties //
|
||||
int counter=0; |
||||
const int loops=NSN*namesHeaders.size()*NSN*namesHeaders.size(); |
||||
for (size_t n=0; n<namesHeaders.size(); n++) |
||||
{ |
||||
for (int i=1; i<=NSN; i++) |
||||
{ |
||||
// read current image //
|
||||
stringstream thepathandname; |
||||
thepathandname<<path+namesHeaders[n]<<"-"<<i<<".png"; |
||||
Mat currentQuery, flippedHQuery, flippedVQuery; |
||||
currentQuery=imread(thepathandname.str(), IMREAD_GRAYSCALE); |
||||
Mat currentQueryBuf=currentQuery.clone(); |
||||
flip(currentQuery, flippedHQuery, 0); |
||||
flip(currentQuery, flippedVQuery, 1); |
||||
// compute border of the query and its flipped versions //
|
||||
vector<Point2f> origContour; |
||||
contoursQuery1=convertContourType(currentQuery, NP); |
||||
origContour=contoursQuery1; |
||||
contoursQuery2=convertContourType(flippedHQuery, NP); |
||||
contoursQuery3=convertContourType(flippedVQuery, NP); |
||||
|
||||
// compare with all the rest of the images: testing //
|
||||
for (size_t nt=0; nt<namesHeaders.size(); nt++) |
||||
{ |
||||
for (int it=1; it<=NSN; it++) |
||||
{ |
||||
// skip self-comparisson //
|
||||
counter++; |
||||
if (nt==n && it==i) |
||||
{ |
||||
distanceMat.at<float>(NSN*n+i-1, |
||||
NSN*nt+it-1)=0; |
||||
continue; |
||||
} |
||||
// read testing image //
|
||||
stringstream thetestpathandname; |
||||
thetestpathandname<<path+namesHeaders[nt]<<"-"<<it<<".png"; |
||||
Mat currentTest; |
||||
currentTest=imread(thetestpathandname.str().c_str(), 0); |
||||
// compute border of the testing //
|
||||
contoursTesting=convertContourType(currentTest, NP); |
||||
|
||||
// compute shape distance //
|
||||
std::cout<<std::endl<<"Progress: "<<counter<<"/"<<loops<<": "<<100*double(counter)/loops<<"% *******"<<std::endl; |
||||
std::cout<<"Computing shape distance between "<<namesHeaders[n]<<i<< |
||||
" and "<<namesHeaders[nt]<<it<<": "; |
||||
distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)= |
||||
computeShapeDistance(contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting); |
||||
std::cout<<distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)<<std::endl; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
// save distance matrix //
|
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::WRITE); |
||||
fs << "distanceMat" << distanceMat; |
||||
} |
||||
|
||||
const int FIRST_MANY=2*NSN; |
||||
void CV_ShapeEMDTest::displayMPEGResults() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
Mat distanceMat; |
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::READ); |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// Read generated MAT //
|
||||
fs["distanceMat"]>>distanceMat; |
||||
|
||||
int corrects=0; |
||||
int divi=0; |
||||
for (int row=0; row<distanceMat.rows; row++) |
||||
{ |
||||
if (row%NSN==0) //another group
|
||||
{ |
||||
divi+=NSN; |
||||
} |
||||
for (int col=divi-NSN; col<divi; col++) |
||||
{ |
||||
int nsmall=0; |
||||
for (int i=0; i<distanceMat.cols; i++) |
||||
{ |
||||
if (distanceMat.at<float>(row,col)>distanceMat.at<float>(row,i)) |
||||
{ |
||||
nsmall++; |
||||
} |
||||
} |
||||
if (nsmall<=FIRST_MANY) |
||||
{ |
||||
corrects++; |
||||
} |
||||
} |
||||
} |
||||
float porc = 100*float(corrects)/(NSN*distanceMat.rows); |
||||
std::cout<<"%="<<porc<<std::endl; |
||||
if (porc >= CURRENT_MAX_ACCUR) |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
else |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
||||
|
||||
} |
||||
|
||||
void CV_ShapeEMDTest::run( int /*start_from*/ ) |
||||
{ |
||||
mpegTest(); |
||||
displayMPEGResults(); |
||||
} |
||||
|
||||
TEST(ShapeEMD_SCD, regression) { CV_ShapeEMDTest test; test.safe_run(); } |
@ -0,0 +1,280 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
#include <stdlib.h> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
const int NSN=5;//10;//20; //number of shapes per class
|
||||
const float CURRENT_MAX_ACCUR=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary
|
||||
|
||||
class CV_HaussTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_HaussTest(); |
||||
~CV_HaussTest(); |
||||
protected: |
||||
void run(int); |
||||
private: |
||||
float computeShapeDistance(vector<Point> &query1, vector<Point> &query2, |
||||
vector<Point> &query3, vector<Point> &testq); |
||||
vector <Point> convertContourType(const Mat& currentQuery, int n=180); |
||||
vector<Point2f> normalizeContour(const vector <Point>& contour); |
||||
void listShapeNames( vector<string> &listHeaders); |
||||
void mpegTest(); |
||||
void displayMPEGResults(); |
||||
}; |
||||
|
||||
CV_HaussTest::CV_HaussTest() |
||||
{ |
||||
} |
||||
CV_HaussTest::~CV_HaussTest() |
||||
{ |
||||
} |
||||
|
||||
vector<Point2f> CV_HaussTest::normalizeContour(const vector<Point> &contour) |
||||
{ |
||||
vector<Point2f> output(contour.size()); |
||||
Mat disMat(contour.size(),contour.size(),CV_32F); |
||||
Point2f meanpt(0,0); |
||||
float meanVal=1; |
||||
|
||||
for (size_t ii=0; ii<contour.size(); ii++) |
||||
{ |
||||
for (size_t jj=0; jj<contour.size(); jj++) |
||||
{ |
||||
if (ii==jj) disMat.at<float>(ii,jj)=0; |
||||
else |
||||
{ |
||||
disMat.at<float>(ii,jj)= |
||||
float(fabs(double(contour[ii].x*contour[jj].x)))+float(fabs(double(contour[ii].y*contour[jj].y))); |
||||
} |
||||
} |
||||
meanpt.x+=contour[ii].x; |
||||
meanpt.y+=contour[ii].y; |
||||
} |
||||
meanpt.x/=contour.size(); |
||||
meanpt.y/=contour.size(); |
||||
meanVal=float(cv::mean(disMat)[0]); |
||||
for (size_t ii=0; ii<contour.size(); ii++) |
||||
{ |
||||
output[ii].x = (contour[ii].x-meanpt.x)/meanVal; |
||||
output[ii].y = (contour[ii].y-meanpt.y)/meanVal; |
||||
} |
||||
return output; |
||||
} |
||||
|
||||
void CV_HaussTest::listShapeNames( vector<string> &listHeaders) |
||||
{ |
||||
listHeaders.push_back("apple"); //ok
|
||||
listHeaders.push_back("children"); // ok
|
||||
listHeaders.push_back("device7"); // ok
|
||||
listHeaders.push_back("Heart"); // ok
|
||||
listHeaders.push_back("teddy"); // ok
|
||||
} |
||||
|
||||
|
||||
vector <Point> CV_HaussTest::convertContourType(const Mat& currentQuery, int n) |
||||
{ |
||||
vector<vector<Point> > _contoursQuery; |
||||
vector <Point> contoursQuery; |
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
||||
for (size_t border=0; border<_contoursQuery.size(); border++) |
||||
{ |
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
||||
{ |
||||
contoursQuery.push_back(_contoursQuery[border][p]); |
||||
} |
||||
} |
||||
|
||||
// In case actual number of points is less than n
|
||||
for (int add=contoursQuery.size()-1; add<n; add++) |
||||
{ |
||||
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
|
||||
} |
||||
|
||||
// Uniformly sampling
|
||||
random_shuffle(contoursQuery.begin(), contoursQuery.end()); |
||||
int nStart=n; |
||||
vector<Point> cont; |
||||
for (int i=0; i<nStart; i++) |
||||
{ |
||||
cont.push_back(contoursQuery[i]); |
||||
} |
||||
return cont; |
||||
} |
||||
|
||||
float CV_HaussTest::computeShapeDistance(vector <Point>& query1, vector <Point>& query2, |
||||
vector <Point>& query3, vector <Point>& testq) |
||||
{ |
||||
Ptr <HausdorffDistanceExtractor> haus = createHausdorffDistanceExtractor(); |
||||
return std::min(haus->computeDistance(query1,testq), std::min(haus->computeDistance(query2,testq), |
||||
haus->computeDistance(query3,testq))); |
||||
} |
||||
|
||||
void CV_HaussTest::mpegTest() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
string path = cvtest::TS::ptr()->get_data_path() + baseTestFolder; |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// distance matrix //
|
||||
Mat distanceMat=Mat::zeros(NSN*namesHeaders.size(), NSN*namesHeaders.size(), CV_32F); |
||||
|
||||
// query contours (normal v flipped, h flipped) and testing contour //
|
||||
vector<Point> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; |
||||
|
||||
// reading query and computing its properties //
|
||||
int counter=0; |
||||
const int loops=NSN*namesHeaders.size()*NSN*namesHeaders.size(); |
||||
for (size_t n=0; n<namesHeaders.size(); n++) |
||||
{ |
||||
for (int i=1; i<=NSN; i++) |
||||
{ |
||||
// read current image //
|
||||
stringstream thepathandname; |
||||
thepathandname<<path+namesHeaders[n]<<"-"<<i<<".png"; |
||||
Mat currentQuery, flippedHQuery, flippedVQuery; |
||||
currentQuery=imread(thepathandname.str(), IMREAD_GRAYSCALE); |
||||
flip(currentQuery, flippedHQuery, 0); |
||||
flip(currentQuery, flippedVQuery, 1); |
||||
// compute border of the query and its flipped versions //
|
||||
vector<Point> origContour; |
||||
contoursQuery1=convertContourType(currentQuery); |
||||
origContour=contoursQuery1; |
||||
contoursQuery2=convertContourType(flippedHQuery); |
||||
contoursQuery3=convertContourType(flippedVQuery); |
||||
|
||||
// compare with all the rest of the images: testing //
|
||||
for (size_t nt=0; nt<namesHeaders.size(); nt++) |
||||
{ |
||||
for (int it=1; it<=NSN; it++) |
||||
{ |
||||
/* skip self-comparisson */ |
||||
counter++; |
||||
if (nt==n && it==i) |
||||
{ |
||||
distanceMat.at<float>(NSN*n+i-1, |
||||
NSN*nt+it-1)=0; |
||||
continue; |
||||
} |
||||
// read testing image //
|
||||
stringstream thetestpathandname; |
||||
thetestpathandname<<path+namesHeaders[nt]<<"-"<<it<<".png"; |
||||
Mat currentTest; |
||||
currentTest=imread(thetestpathandname.str().c_str(), 0); |
||||
|
||||
// compute border of the testing //
|
||||
contoursTesting=convertContourType(currentTest); |
||||
|
||||
// compute shape distance //
|
||||
std::cout<<std::endl<<"Progress: "<<counter<<"/"<<loops<<": "<<100*double(counter)/loops<<"% *******"<<std::endl; |
||||
std::cout<<"Computing shape distance between "<<namesHeaders[n]<<i<< |
||||
" and "<<namesHeaders[nt]<<it<<": "; |
||||
distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)= |
||||
computeShapeDistance(contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting); |
||||
std::cout<<distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)<<std::endl; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
// save distance matrix //
|
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::WRITE); |
||||
fs << "distanceMat" << distanceMat; |
||||
} |
||||
|
||||
const int FIRST_MANY=2*NSN; |
||||
void CV_HaussTest::displayMPEGResults() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
Mat distanceMat; |
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::READ); |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// Read generated MAT //
|
||||
fs["distanceMat"]>>distanceMat; |
||||
|
||||
int corrects=0; |
||||
int divi=0; |
||||
for (int row=0; row<distanceMat.rows; row++) |
||||
{ |
||||
if (row%NSN==0) //another group
|
||||
{ |
||||
divi+=NSN; |
||||
} |
||||
for (int col=divi-NSN; col<divi; col++) |
||||
{ |
||||
int nsmall=0; |
||||
for (int i=0; i<distanceMat.cols; i++) |
||||
{ |
||||
if (distanceMat.at<float>(row,col)>distanceMat.at<float>(row,i)) |
||||
{ |
||||
nsmall++; |
||||
} |
||||
} |
||||
if (nsmall<=FIRST_MANY) |
||||
{ |
||||
corrects++; |
||||
} |
||||
} |
||||
} |
||||
float porc = 100*float(corrects)/(NSN*distanceMat.rows); |
||||
std::cout<<"%="<<porc<<std::endl; |
||||
if (porc >= CURRENT_MAX_ACCUR) |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
else |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
||||
|
||||
} |
||||
|
||||
|
||||
void CV_HaussTest::run(int /* */) |
||||
{ |
||||
mpegTest(); |
||||
displayMPEGResults(); |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
|
||||
TEST(Hauss, regression) { CV_HaussTest test; test.safe_run(); } |
@ -0,0 +1,3 @@ |
||||
#include "test_precomp.hpp" |
||||
|
||||
CV_TEST_MAIN("cv") |
@ -0,0 +1 @@ |
||||
#include "test_precomp.hpp" |
@ -0,0 +1,21 @@ |
||||
#ifdef __GNUC__ |
||||
# pragma GCC diagnostic ignored "-Wmissing-declarations" |
||||
# if defined __clang__ || defined __APPLE__ |
||||
# pragma GCC diagnostic ignored "-Wmissing-prototypes" |
||||
# pragma GCC diagnostic ignored "-Wextra" |
||||
# endif |
||||
#endif |
||||
|
||||
#ifndef __OPENCV_TEST_PRECOMP_HPP__ |
||||
#define __OPENCV_TEST_PRECOMP_HPP__ |
||||
|
||||
#include <iostream> |
||||
#include "opencv2/ts.hpp" |
||||
#include "opencv2/core.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/highgui.hpp" |
||||
#include "opencv2/shape.hpp" |
||||
|
||||
#include "opencv2/opencv_modules.hpp" |
||||
|
||||
#endif |
@ -0,0 +1,267 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
const int angularBins=12; |
||||
const int radialBins=4; |
||||
const float minRad=0.2; |
||||
const float maxRad=2; |
||||
const int NSN=5;//10;//20; //number of shapes per class
|
||||
const int NP=120; //number of points sympliying the contour
|
||||
const float outlierWeight=0.1; |
||||
const int numOutliers=20; |
||||
const float CURRENT_MAX_ACCUR=95.0; //99% and 100% reached in several tests, 95 is fixed as minimum boundary
|
||||
|
||||
class CV_ShapeTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_ShapeTest(); |
||||
~CV_ShapeTest(); |
||||
protected: |
||||
void run(int); |
||||
|
||||
private: |
||||
void mpegTest(); |
||||
void listShapeNames(vector<string> &listHeaders); |
||||
vector<Point2f> convertContourType(const Mat &, int n=0 ); |
||||
float computeShapeDistance(vector <Point2f>& queryNormal, |
||||
vector <Point2f>& queryFlipped1, |
||||
vector <Point2f>& queryFlipped2, |
||||
vector<Point2f>& testq); |
||||
void displayMPEGResults(); |
||||
}; |
||||
|
||||
CV_ShapeTest::CV_ShapeTest() |
||||
{ |
||||
} |
||||
CV_ShapeTest::~CV_ShapeTest() |
||||
{ |
||||
} |
||||
|
||||
vector <Point2f> CV_ShapeTest::convertContourType(const Mat& currentQuery, int n) |
||||
{ |
||||
vector<vector<Point> > _contoursQuery; |
||||
vector <Point2f> contoursQuery; |
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
||||
for (size_t border=0; border<_contoursQuery.size(); border++) |
||||
{ |
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
||||
{ |
||||
contoursQuery.push_back(Point2f((float)_contoursQuery[border][p].x, |
||||
(float)_contoursQuery[border][p].y)); |
||||
} |
||||
} |
||||
|
||||
// In case actual number of points is less than n
|
||||
for (int add=contoursQuery.size()-1; add<n; add++) |
||||
{ |
||||
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values
|
||||
} |
||||
|
||||
// Uniformly sampling
|
||||
random_shuffle(contoursQuery.begin(), contoursQuery.end()); |
||||
int nStart=n; |
||||
vector<Point2f> cont; |
||||
for (int i=0; i<nStart; i++) |
||||
{ |
||||
cont.push_back(contoursQuery[i]); |
||||
} |
||||
return cont; |
||||
} |
||||
|
||||
void CV_ShapeTest::listShapeNames( vector<string> &listHeaders) |
||||
{ |
||||
listHeaders.push_back("apple"); //ok
|
||||
listHeaders.push_back("children"); // ok
|
||||
listHeaders.push_back("device7"); // ok
|
||||
listHeaders.push_back("Heart"); // ok
|
||||
listHeaders.push_back("teddy"); // ok
|
||||
} |
||||
|
||||
float CV_ShapeTest::computeShapeDistance(vector <Point2f>& query1, vector <Point2f>& query2, |
||||
vector <Point2f>& query3, vector <Point2f>& testq) |
||||
{ |
||||
//waitKey(0);
|
||||
Ptr <ShapeContextDistanceExtractor> mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad); |
||||
//Ptr <HistogramCostExtractor> cost = createNormHistogramCostExtractor(cv::DIST_L1);
|
||||
Ptr <HistogramCostExtractor> cost = createChiHistogramCostExtractor(30,0.15); |
||||
//Ptr <HistogramCostExtractor> cost = createEMDHistogramCostExtractor();
|
||||
//Ptr <HistogramCostExtractor> cost = createEMDL1HistogramCostExtractor();
|
||||
mysc->setIterations(1); |
||||
mysc->setCostExtractor( cost ); |
||||
//mysc->setTransformAlgorithm(createAffineTransformer(true));
|
||||
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() ); |
||||
//mysc->setImageAppearanceWeight(1.6);
|
||||
//mysc->setImageAppearanceWeight(0.0);
|
||||
//mysc->setImages(im1,imtest);
|
||||
return ( std::min( mysc->computeDistance(query1, testq), |
||||
std::min(mysc->computeDistance(query2, testq), mysc->computeDistance(query3, testq) ))); |
||||
} |
||||
|
||||
void CV_ShapeTest::mpegTest() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
string path = cvtest::TS::ptr()->get_data_path() + baseTestFolder; |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// distance matrix //
|
||||
Mat distanceMat=Mat::zeros(NSN*namesHeaders.size(), NSN*namesHeaders.size(), CV_32F); |
||||
|
||||
// query contours (normal v flipped, h flipped) and testing contour //
|
||||
vector<Point2f> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; |
||||
|
||||
// reading query and computing its properties //
|
||||
int counter=0; |
||||
const int loops=NSN*namesHeaders.size()*NSN*namesHeaders.size(); |
||||
for (size_t n=0; n<namesHeaders.size(); n++) |
||||
{ |
||||
for (int i=1; i<=NSN; i++) |
||||
{ |
||||
// read current image //
|
||||
stringstream thepathandname; |
||||
thepathandname<<path+namesHeaders[n]<<"-"<<i<<".png"; |
||||
Mat currentQuery, flippedHQuery, flippedVQuery; |
||||
currentQuery=imread(thepathandname.str(), IMREAD_GRAYSCALE); |
||||
Mat currentQueryBuf=currentQuery.clone(); |
||||
flip(currentQuery, flippedHQuery, 0); |
||||
flip(currentQuery, flippedVQuery, 1); |
||||
// compute border of the query and its flipped versions //
|
||||
vector<Point2f> origContour; |
||||
contoursQuery1=convertContourType(currentQuery, NP); |
||||
origContour=contoursQuery1; |
||||
contoursQuery2=convertContourType(flippedHQuery, NP); |
||||
contoursQuery3=convertContourType(flippedVQuery, NP); |
||||
|
||||
// compare with all the rest of the images: testing //
|
||||
for (size_t nt=0; nt<namesHeaders.size(); nt++) |
||||
{ |
||||
for (int it=1; it<=NSN; it++) |
||||
{ |
||||
// skip self-comparisson //
|
||||
counter++; |
||||
if (nt==n && it==i) |
||||
{ |
||||
distanceMat.at<float>(NSN*n+i-1, |
||||
NSN*nt+it-1)=0; |
||||
continue; |
||||
} |
||||
// read testing image //
|
||||
stringstream thetestpathandname; |
||||
thetestpathandname<<path+namesHeaders[nt]<<"-"<<it<<".png"; |
||||
Mat currentTest; |
||||
currentTest=imread(thetestpathandname.str().c_str(), 0); |
||||
// compute border of the testing //
|
||||
contoursTesting=convertContourType(currentTest, NP); |
||||
|
||||
// compute shape distance //
|
||||
std::cout<<std::endl<<"Progress: "<<counter<<"/"<<loops<<": "<<100*double(counter)/loops<<"% *******"<<std::endl; |
||||
std::cout<<"Computing shape distance between "<<namesHeaders[n]<<i<< |
||||
" and "<<namesHeaders[nt]<<it<<": "; |
||||
distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)= |
||||
computeShapeDistance(contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting); |
||||
std::cout<<distanceMat.at<float>(NSN*n+i-1, NSN*nt+it-1)<<std::endl; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
// save distance matrix //
|
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::WRITE); |
||||
fs << "distanceMat" << distanceMat; |
||||
} |
||||
|
||||
const int FIRST_MANY=2*NSN; |
||||
void CV_ShapeTest::displayMPEGResults() |
||||
{ |
||||
string baseTestFolder="shape/mpeg_test/"; |
||||
Mat distanceMat; |
||||
FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::READ); |
||||
vector<string> namesHeaders; |
||||
listShapeNames(namesHeaders); |
||||
|
||||
// Read generated MAT //
|
||||
fs["distanceMat"]>>distanceMat; |
||||
|
||||
int corrects=0; |
||||
int divi=0; |
||||
for (int row=0; row<distanceMat.rows; row++) |
||||
{ |
||||
if (row%NSN==0) //another group
|
||||
{ |
||||
divi+=NSN; |
||||
} |
||||
for (int col=divi-NSN; col<divi; col++) |
||||
{ |
||||
int nsmall=0; |
||||
for (int i=0; i<distanceMat.cols; i++) |
||||
{ |
||||
if (distanceMat.at<float>(row,col)>distanceMat.at<float>(row,i)) |
||||
{ |
||||
nsmall++; |
||||
} |
||||
} |
||||
if (nsmall<=FIRST_MANY) |
||||
{ |
||||
corrects++; |
||||
} |
||||
} |
||||
} |
||||
float porc = 100*float(corrects)/(NSN*distanceMat.rows); |
||||
std::cout<<"%="<<porc<<std::endl; |
||||
if (porc >= CURRENT_MAX_ACCUR) |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
else |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
||||
//done
|
||||
} |
||||
|
||||
void CV_ShapeTest::run( int /*start_from*/ ) |
||||
{ |
||||
mpegTest(); |
||||
displayMPEGResults(); |
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
|
||||
TEST(Shape_SCD, regression) { CV_ShapeTest test; test.safe_run(); } |
@ -0,0 +1,111 @@ |
||||
/*
|
||||
* shape_context.cpp -- Shape context demo for shape matching |
||||
*/ |
||||
|
||||
#include "opencv2/shape.hpp" |
||||
#include "opencv2/highgui.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
#include <opencv2/core/utility.hpp> |
||||
#include <iostream> |
||||
#include <string> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
static void help() |
||||
{ |
||||
printf("\n" |
||||
"This program demonstrates a method for shape comparisson based on Shape Context\n" |
||||
"You should run the program providing a number between 1 and 20 for selecting an image in the folder shape_sample.\n" |
||||
"Call\n" |
||||
"./shape_example [number between 1 and 20]\n\n"); |
||||
} |
||||
|
||||
static vector<Point> simpleContour( const Mat& currentQuery, int n=300 ) |
||||
{ |
||||
vector<vector<Point> > _contoursQuery; |
||||
vector <Point> contoursQuery; |
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
||||
for (size_t border=0; border<_contoursQuery.size(); border++) |
||||
{ |
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
||||
{ |
||||
contoursQuery.push_back( _contoursQuery[border][p] ); |
||||
} |
||||
} |
||||
|
||||
// In case actual number of points is less than n
|
||||
int dummy=0; |
||||
for (int add=contoursQuery.size()-1; add<n; add++) |
||||
{ |
||||
contoursQuery.push_back(contoursQuery[dummy++]); //adding dummy values
|
||||
} |
||||
|
||||
// Uniformly sampling
|
||||
random_shuffle(contoursQuery.begin(), contoursQuery.end()); |
||||
vector<Point> cont; |
||||
for (int i=0; i<n; i++) |
||||
{ |
||||
cont.push_back(contoursQuery[i]); |
||||
} |
||||
return cont; |
||||
} |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
help(); |
||||
string path = "./shape_sample/"; |
||||
int indexQuery = 1; |
||||
if( argc < 2 ) |
||||
{ |
||||
std::cout<<"Using first image as query."<<std::endl; |
||||
} |
||||
else |
||||
{ |
||||
sscanf( argv[1], "%i", &indexQuery ); |
||||
} |
||||
cv::Ptr <cv::ShapeContextDistanceExtractor> mysc = cv::createShapeContextDistanceExtractor(); |
||||
|
||||
Size sz2Sh(300,300); |
||||
stringstream queryName; |
||||
queryName<<path<<indexQuery<<".png"; |
||||
Mat query=imread(queryName.str(), IMREAD_GRAYSCALE); |
||||
Mat queryToShow; |
||||
resize(query, queryToShow, sz2Sh); |
||||
imshow("QUERY", queryToShow); |
||||
moveWindow("TEST", 0,0); |
||||
vector<Point> contQuery = simpleContour(query); |
||||
int bestMatch = 0; |
||||
float bestDis=FLT_MAX; |
||||
for ( int ii=1; ii<=20; ii++ ) |
||||
{ |
||||
if (ii==indexQuery) continue; |
||||
waitKey(30); |
||||
stringstream iiname; |
||||
iiname<<path<<ii<<".png"; |
||||
cout<<"name: "<<iiname.str()<<endl; |
||||
Mat iiIm=imread(iiname.str(), 0); |
||||
Mat iiToShow; |
||||
resize(iiIm, iiToShow, sz2Sh); |
||||
imshow("TEST", iiToShow); |
||||
moveWindow("TEST", sz2Sh.width+50,0); |
||||
vector<Point> contii = simpleContour(iiIm); |
||||
float dis = mysc->computeDistance( contQuery, contii ); |
||||
if ( dis<bestDis ) |
||||
{ |
||||
bestMatch = ii; |
||||
bestDis = dis; |
||||
} |
||||
std::cout<<" distance between "<<queryName.str()<<" and "<<iiname.str()<<" is: "<<dis<<std::endl; |
||||
} |
||||
destroyWindow("TEST"); |
||||
stringstream bestname; |
||||
bestname<<path<<bestMatch<<".png"; |
||||
Mat iiIm=imread(bestname.str(), 0); |
||||
Mat bestToShow; |
||||
resize(iiIm, bestToShow, sz2Sh); |
||||
imshow("BEST MATCH", bestToShow); |
||||
moveWindow("BEST MATCH", sz2Sh.width+50,0); |
||||
|
||||
return 0; |
||||
} |
After Width: | Height: | Size: 705 B |
After Width: | Height: | Size: 1.0 KiB |
After Width: | Height: | Size: 722 B |
After Width: | Height: | Size: 437 B |
After Width: | Height: | Size: 443 B |
After Width: | Height: | Size: 1.8 KiB |
After Width: | Height: | Size: 803 B |
After Width: | Height: | Size: 830 B |
After Width: | Height: | Size: 3.0 KiB |
After Width: | Height: | Size: 3.2 KiB |
After Width: | Height: | Size: 1.5 KiB |
After Width: | Height: | Size: 813 B |
After Width: | Height: | Size: 1.5 KiB |
After Width: | Height: | Size: 2.2 KiB |
After Width: | Height: | Size: 2.4 KiB |
After Width: | Height: | Size: 852 B |
After Width: | Height: | Size: 969 B |
After Width: | Height: | Size: 874 B |
After Width: | Height: | Size: 851 B |
After Width: | Height: | Size: 1.2 KiB |
@ -0,0 +1,74 @@ |
||||
/*
|
||||
* shape_context.cpp -- Shape context demo for shape matching |
||||
*/ |
||||
|
||||
#include "opencv2/shape.hpp" |
||||
#include "opencv2/highgui.hpp" |
||||
#include "opencv2/imgproc.hpp" |
||||
#include "opencv2/features2d/features2d.hpp" |
||||
#include "opencv2/nonfree/nonfree.hpp" |
||||
#include <opencv2/core/utility.hpp> |
||||
#include <iostream> |
||||
#include <string> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
static void help() |
||||
{ |
||||
printf("\nThis program demonstrates how to use common interface for shape transformers\n" |
||||
"Call\n" |
||||
"shape_transformation [image1] [image2]\n"); |
||||
} |
||||
|
||||
int main(int argc, char** argv) |
||||
{ |
||||
help(); |
||||
Mat img1 = imread(argv[1], IMREAD_GRAYSCALE); |
||||
Mat img2 = imread(argv[2], IMREAD_GRAYSCALE); |
||||
if(img1.empty() || img2.empty() || argc<2) |
||||
{ |
||||
printf("Can't read one of the images\n"); |
||||
return -1; |
||||
} |
||||
|
||||
// detecting keypoints
|
||||
SurfFeatureDetector detector(5000); |
||||
vector<KeyPoint> keypoints1, keypoints2; |
||||
detector.detect(img1, keypoints1); |
||||
detector.detect(img2, keypoints2); |
||||
|
||||
// computing descriptors
|
||||
SurfDescriptorExtractor extractor; |
||||
Mat descriptors1, descriptors2; |
||||
extractor.compute(img1, keypoints1, descriptors1); |
||||
extractor.compute(img2, keypoints2, descriptors2); |
||||
|
||||
// matching descriptors
|
||||
BFMatcher matcher(NORM_L2); |
||||
vector<DMatch> matches; |
||||
matcher.match(descriptors1, descriptors2, matches); |
||||
|
||||
// drawing the results
|
||||
namedWindow("matches", 1); |
||||
Mat img_matches; |
||||
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches); |
||||
imshow("matches", img_matches); |
||||
|
||||
// extract points
|
||||
vector<Point2f> pts1, pts2; |
||||
for (size_t ii=0; ii<keypoints1.size(); ii++) |
||||
pts1.push_back( keypoints1[ii].pt ); |
||||
for (size_t ii=0; ii<keypoints2.size(); ii++) |
||||
pts2.push_back( keypoints2[ii].pt ); |
||||
|
||||
// Apply TPS
|
||||
Ptr<ThinPlateSplineShapeTransformer> mytps = createThinPlateSplineShapeTransformer(25000); //TPS with a relaxed constraint
|
||||
mytps->estimateTransformation(pts1, pts2, matches); |
||||
mytps->warpImage(img2, img2); |
||||
|
||||
imshow("Tranformed", img2); |
||||
waitKey(0); |
||||
|
||||
return 0; |
||||
} |