mirror of https://github.com/opencv/opencv.git
Merge pull request #17647 from jinyup100:add-siamrpnpp
[GSoC] Add siamrpnpp.py * Updated base branch with siamrpnpp.py * Addition of Parsers * Merged to using few ONNX files, Changes to Parsers, Links to Repo * Deleted whitespace * Adjusting flake8 error * Fixes according to review * Fix according to review * Addition of OpenVINO backends and Computation target devices * Fix on backend after review * Fixes after review * Remove extra white space * Removed Repeated Varaiblespull/18211/head
parent
c7422e4d90
commit
a160e4fb6b
1 changed files with 397 additions and 0 deletions
@ -0,0 +1,397 @@ |
||||
import argparse |
||||
import cv2 as cv |
||||
import numpy as np |
||||
import os |
||||
|
||||
""" |
||||
Link to original paper : https://arxiv.org/abs/1812.11703 |
||||
Link to original repo : https://github.com/STVIR/pysot |
||||
|
||||
You can download the pre-trained weights of the Tracker Model from https://drive.google.com/file/d/11bwgPFVkps9AH2NOD1zBDdpF_tQghAB-/view?usp=sharing |
||||
You can download the target net (target branch of SiamRPN++) from https://drive.google.com/file/d/1dw_Ne3UMcCnFsaD6xkZepwE4GEpqq7U_/view?usp=sharing |
||||
You can download the search net (search branch of SiamRPN++) from https://drive.google.com/file/d/1Lt4oE43ZSucJvze3Y-Z87CVDreO-Afwl/view?usp=sharing |
||||
You can download the head model (RPN Head) from https://drive.google.com/file/d/1zT1yu12mtj3JQEkkfKFJWiZ71fJ-dQTi/view?usp=sharing |
||||
""" |
||||
|
||||
class ModelBuilder(): |
||||
""" This class generates the SiamRPN++ Tracker Model by using Imported ONNX Nets |
||||
""" |
||||
def __init__(self, target_net, search_net, rpn_head): |
||||
super(ModelBuilder, self).__init__() |
||||
# Build the target branch |
||||
self.target_net = target_net |
||||
# Build the search branch |
||||
self.search_net = search_net |
||||
# Build RPN_Head |
||||
self.rpn_head = rpn_head |
||||
|
||||
def template(self, z): |
||||
""" Takes the template of size (1, 1, 127, 127) as an input to generate kernel |
||||
""" |
||||
self.target_net.setInput(z) |
||||
outNames = self.target_net.getUnconnectedOutLayersNames() |
||||
self.zfs_1, self.zfs_2, self.zfs_3 = self.target_net.forward(outNames) |
||||
|
||||
def track(self, x): |
||||
""" Takes the search of size (1, 1, 255, 255) as an input to generate classification score and bounding box regression |
||||
""" |
||||
self.search_net.setInput(x) |
||||
outNames = self.search_net.getUnconnectedOutLayersNames() |
||||
xfs_1, xfs_2, xfs_3 = self.search_net.forward(outNames) |
||||
self.rpn_head.setInput(np.stack([self.zfs_1, self.zfs_2, self.zfs_3]), 'input_1') |
||||
self.rpn_head.setInput(np.stack([xfs_1, xfs_2, xfs_3]), 'input_2') |
||||
outNames = self.rpn_head.getUnconnectedOutLayersNames() |
||||
cls, loc = self.rpn_head.forward(outNames) |
||||
return {'cls': cls, 'loc': loc} |
||||
|
||||
class Anchors: |
||||
""" This class generate anchors. |
||||
""" |
||||
def __init__(self, stride, ratios, scales, image_center=0, size=0): |
||||
self.stride = stride |
||||
self.ratios = ratios |
||||
self.scales = scales |
||||
self.image_center = image_center |
||||
self.size = size |
||||
self.anchor_num = len(self.scales) * len(self.ratios) |
||||
self.anchors = self.generate_anchors() |
||||
|
||||
def generate_anchors(self): |
||||
""" |
||||
generate anchors based on predefined configuration |
||||
""" |
||||
anchors = np.zeros((self.anchor_num, 4), dtype=np.float32) |
||||
size = self.stride**2 |
||||
count = 0 |
||||
for r in self.ratios: |
||||
ws = int(np.sqrt(size * 1. / r)) |
||||
hs = int(ws * r) |
||||
|
||||
for s in self.scales: |
||||
w = ws * s |
||||
h = hs * s |
||||
anchors[count][:] = [-w * 0.5, -h * 0.5, w * 0.5, h * 0.5][:] |
||||
count += 1 |
||||
return anchors |
||||
|
||||
class SiamRPNTracker: |
||||
def __init__(self, model): |
||||
super(SiamRPNTracker, self).__init__() |
||||
self.anchor_stride = 8 |
||||
self.anchor_ratios = [0.33, 0.5, 1, 2, 3] |
||||
self.anchor_scales = [8] |
||||
self.track_base_size = 8 |
||||
self.track_context_amount = 0.5 |
||||
self.track_exemplar_size = 127 |
||||
self.track_instance_size = 255 |
||||
self.track_lr = 0.4 |
||||
self.track_penalty_k = 0.04 |
||||
self.track_window_influence = 0.44 |
||||
self.score_size = (self.track_instance_size - self.track_exemplar_size) // \ |
||||
self.anchor_stride + 1 + self.track_base_size |
||||
self.anchor_num = len(self.anchor_ratios) * len(self.anchor_scales) |
||||
hanning = np.hanning(self.score_size) |
||||
window = np.outer(hanning, hanning) |
||||
self.window = np.tile(window.flatten(), self.anchor_num) |
||||
self.anchors = self.generate_anchor(self.score_size) |
||||
self.model = model |
||||
|
||||
def get_subwindow(self, im, pos, model_sz, original_sz, avg_chans): |
||||
""" |
||||
Args: |
||||
im: bgr based input image frame |
||||
pos: position of the center of the frame |
||||
model_sz: exemplar / target image size |
||||
s_z: original / search image size |
||||
avg_chans: channel average |
||||
Return: |
||||
im_patch: sub_windows for the given image input |
||||
""" |
||||
if isinstance(pos, float): |
||||
pos = [pos, pos] |
||||
sz = original_sz |
||||
im_h, im_w, im_d = im.shape |
||||
c = (original_sz + 1) / 2 |
||||
cx, cy = pos |
||||
context_xmin = np.floor(cx - c + 0.5) |
||||
context_xmax = context_xmin + sz - 1 |
||||
context_ymin = np.floor(cy - c + 0.5) |
||||
context_ymax = context_ymin + sz - 1 |
||||
left_pad = int(max(0., -context_xmin)) |
||||
top_pad = int(max(0., -context_ymin)) |
||||
right_pad = int(max(0., context_xmax - im_w + 1)) |
||||
bottom_pad = int(max(0., context_ymax - im_h + 1)) |
||||
context_xmin += left_pad |
||||
context_xmax += left_pad |
||||
context_ymin += top_pad |
||||
context_ymax += top_pad |
||||
|
||||
if any([top_pad, bottom_pad, left_pad, right_pad]): |
||||
size = (im_h + top_pad + bottom_pad, im_w + left_pad + right_pad, im_d) |
||||
te_im = np.zeros(size, np.uint8) |
||||
te_im[top_pad:top_pad + im_h, left_pad:left_pad + im_w, :] = im |
||||
if top_pad: |
||||
te_im[0:top_pad, left_pad:left_pad + im_w, :] = avg_chans |
||||
if bottom_pad: |
||||
te_im[im_h + top_pad:, left_pad:left_pad + im_w, :] = avg_chans |
||||
if left_pad: |
||||
te_im[:, 0:left_pad, :] = avg_chans |
||||
if right_pad: |
||||
te_im[:, im_w + left_pad:, :] = avg_chans |
||||
im_patch = te_im[int(context_ymin):int(context_ymax + 1), |
||||
int(context_xmin):int(context_xmax + 1), :] |
||||
else: |
||||
im_patch = im[int(context_ymin):int(context_ymax + 1), |
||||
int(context_xmin):int(context_xmax + 1), :] |
||||
|
||||
if not np.array_equal(model_sz, original_sz): |
||||
im_patch = cv.resize(im_patch, (model_sz, model_sz)) |
||||
im_patch = im_patch.transpose(2, 0, 1) |
||||
im_patch = im_patch[np.newaxis, :, :, :] |
||||
im_patch = im_patch.astype(np.float32) |
||||
return im_patch |
||||
|
||||
def generate_anchor(self, score_size): |
||||
""" |
||||
Args: |
||||
im: bgr based input image frame |
||||
pos: position of the center of the frame |
||||
model_sz: exemplar / target image size |
||||
s_z: original / search image size |
||||
avg_chans: channel average |
||||
Return: |
||||
anchor: anchors for pre-determined values of stride, ratio, and scale |
||||
""" |
||||
anchors = Anchors(self.anchor_stride, self.anchor_ratios, self.anchor_scales) |
||||
anchor = anchors.anchors |
||||
x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3] |
||||
anchor = np.stack([(x1 + x2) * 0.5, (y1 + y2) * 0.5, x2 - x1, y2 - y1], 1) |
||||
total_stride = anchors.stride |
||||
anchor_num = anchors.anchor_num |
||||
anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4)) |
||||
ori = - (score_size // 2) * total_stride |
||||
xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)], |
||||
[ori + total_stride * dy for dy in range(score_size)]) |
||||
xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \ |
||||
np.tile(yy.flatten(), (anchor_num, 1)).flatten() |
||||
anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32) |
||||
return anchor |
||||
|
||||
def _convert_bbox(self, delta, anchor): |
||||
""" |
||||
Args: |
||||
delta: localisation |
||||
anchor: anchor of pre-determined anchor size |
||||
Return: |
||||
delta: prediction of bounding box |
||||
""" |
||||
delta_transpose = np.transpose(delta, (1, 2, 3, 0)) |
||||
delta_contig = np.ascontiguousarray(delta_transpose) |
||||
delta = delta_contig.reshape(4, -1) |
||||
delta[0, :] = delta[0, :] * anchor[:, 2] + anchor[:, 0] |
||||
delta[1, :] = delta[1, :] * anchor[:, 3] + anchor[:, 1] |
||||
delta[2, :] = np.exp(delta[2, :]) * anchor[:, 2] |
||||
delta[3, :] = np.exp(delta[3, :]) * anchor[:, 3] |
||||
return delta |
||||
|
||||
def _softmax(self, x): |
||||
""" |
||||
Softmax in the direction of the depth of the layer |
||||
""" |
||||
x = x.astype(dtype=np.float32) |
||||
x_max = x.max(axis=1)[:, np.newaxis] |
||||
e_x = np.exp(x-x_max) |
||||
div = np.sum(e_x, axis=1)[:, np.newaxis] |
||||
y = e_x / div |
||||
return y |
||||
|
||||
def _convert_score(self, score): |
||||
""" |
||||
Args: |
||||
cls: score |
||||
Return: |
||||
cls: score for cls |
||||
""" |
||||
score_transpose = np.transpose(score, (1, 2, 3, 0)) |
||||
score_con = np.ascontiguousarray(score_transpose) |
||||
score_view = score_con.reshape(2, -1) |
||||
score = np.transpose(score_view, (1, 0)) |
||||
score = self._softmax(score) |
||||
return score[:,1] |
||||
|
||||
def _bbox_clip(self, cx, cy, width, height, boundary): |
||||
""" |
||||
Adjusting the bounding box |
||||
""" |
||||
bbox_h, bbox_w = boundary |
||||
cx = max(0, min(cx, bbox_w)) |
||||
cy = max(0, min(cy, bbox_h)) |
||||
width = max(10, min(width, bbox_w)) |
||||
height = max(10, min(height, bbox_h)) |
||||
return cx, cy, width, height |
||||
|
||||
def init(self, img, bbox): |
||||
""" |
||||
Args: |
||||
img(np.ndarray): bgr based input image frame |
||||
bbox: (x,y,w,h): bounding box |
||||
""" |
||||
x,y,h,w = bbox |
||||
self.center_pos = np.array([x + (h - 1) / 2, y + (w - 1) / 2]) |
||||
self.h = h |
||||
self.w = w |
||||
w_z = self.w + self.track_context_amount * np.add(h, w) |
||||
h_z = self.h + self.track_context_amount * np.add(h, w) |
||||
s_z = round(np.sqrt(w_z * h_z)) |
||||
self.channel_average = np.mean(img, axis=(0, 1)) |
||||
z_crop = self.get_subwindow(img, self.center_pos, self.track_exemplar_size, s_z, self.channel_average) |
||||
self.model.template(z_crop) |
||||
|
||||
def track(self, img): |
||||
""" |
||||
Args: |
||||
img(np.ndarray): BGR image |
||||
Return: |
||||
bbox(list):[x, y, width, height] |
||||
""" |
||||
w_z = self.w + self.track_context_amount * np.add(self.w, self.h) |
||||
h_z = self.h + self.track_context_amount * np.add(self.w, self.h) |
||||
s_z = np.sqrt(w_z * h_z) |
||||
scale_z = self.track_exemplar_size / s_z |
||||
s_x = s_z * (self.track_instance_size / self.track_exemplar_size) |
||||
x_crop = self.get_subwindow(img, self.center_pos, self.track_instance_size, round(s_x), self.channel_average) |
||||
outputs = self.model.track(x_crop) |
||||
score = self._convert_score(outputs['cls']) |
||||
pred_bbox = self._convert_bbox(outputs['loc'], self.anchors) |
||||
|
||||
def change(r): |
||||
return np.maximum(r, 1. / r) |
||||
|
||||
def sz(w, h): |
||||
pad = (w + h) * 0.5 |
||||
return np.sqrt((w + pad) * (h + pad)) |
||||
|
||||
# scale penalty |
||||
s_c = change(sz(pred_bbox[2, :], pred_bbox[3, :]) / |
||||
(sz(self.w * scale_z, self.h * scale_z))) |
||||
|
||||
# aspect ratio penalty |
||||
r_c = change((self.w / self.h) / |
||||
(pred_bbox[2, :] / pred_bbox[3, :])) |
||||
penalty = np.exp(-(r_c * s_c - 1) * self.track_penalty_k) |
||||
pscore = penalty * score |
||||
|
||||
# window penalty |
||||
pscore = pscore * (1 - self.track_window_influence) + \ |
||||
self.window * self.track_window_influence |
||||
best_idx = np.argmax(pscore) |
||||
bbox = pred_bbox[:, best_idx] / scale_z |
||||
lr = penalty[best_idx] * score[best_idx] * self.track_lr |
||||
|
||||
cpx, cpy = self.center_pos |
||||
x,y,w,h = bbox |
||||
cx = x + cpx |
||||
cy = y + cpy |
||||
|
||||
# smooth bbox |
||||
width = self.w * (1 - lr) + w * lr |
||||
height = self.h * (1 - lr) + h * lr |
||||
|
||||
# clip boundary |
||||
cx, cy, width, height = self._bbox_clip(cx, cy, width, height, img.shape[:2]) |
||||
|
||||
# udpate state |
||||
self.center_pos = np.array([cx, cy]) |
||||
self.w = width |
||||
self.h = height |
||||
bbox = [cx - width / 2, cy - height / 2, width, height] |
||||
best_score = score[best_idx] |
||||
return {'bbox': bbox, 'best_score': best_score} |
||||
|
||||
def get_frames(video_name): |
||||
""" |
||||
Args: |
||||
Path to input video frame |
||||
Return: |
||||
Frame |
||||
""" |
||||
cap = cv.VideoCapture(video_name if video_name else 0) |
||||
while True: |
||||
ret, frame = cap.read() |
||||
if ret: |
||||
yield frame |
||||
else: |
||||
break |
||||
|
||||
def main(): |
||||
""" Sample SiamRPN Tracker |
||||
""" |
||||
# Computation backends supported by layers |
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV) |
||||
# Target Devices for computation |
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD) |
||||
|
||||
parser = argparse.ArgumentParser(description='Use this script to run SiamRPN++ Visual Tracker', |
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
||||
parser.add_argument('--input_video', type=str, help='Path to input video file. Skip this argument to capture frames from a camera.') |
||||
parser.add_argument('--target_net', type=str, default='target_net.onnx', help='Path to part of SiamRPN++ ran on target frame.') |
||||
parser.add_argument('--search_net', type=str, default='search_net.onnx', help='Path to part of SiamRPN++ ran on search frame.') |
||||
parser.add_argument('--rpn_head', type=str, default='rpn_head.onnx', help='Path to RPN Head ONNX model.') |
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, |
||||
help='Select a computation backend: ' |
||||
"%d: automatically (by default) " |
||||
"%d: Halide" |
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit)" |
||||
"%d: OpenCV Implementation" % backends) |
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, |
||||
help='Select a target device: ' |
||||
"%d: CPU target (by default)" |
||||
"%d: OpenCL" |
||||
"%d: OpenCL FP16" |
||||
"%d: Myriad" % targets) |
||||
args, _ = parser.parse_known_args() |
||||
|
||||
if args.input_video and not os.path.isfile(args.input_video): |
||||
raise OSError("Input video file does not exist") |
||||
if not os.path.isfile(args.target_net): |
||||
raise OSError("Target Net does not exist") |
||||
if not os.path.isfile(args.search_net): |
||||
raise OSError("Search Net does not exist") |
||||
if not os.path.isfile(args.rpn_head): |
||||
raise OSError("RPN Head Net does not exist") |
||||
|
||||
#Load the Networks |
||||
target_net = cv.dnn.readNetFromONNX(args.target_net) |
||||
target_net.setPreferableBackend(args.backend) |
||||
target_net.setPreferableTarget(args.target) |
||||
search_net = cv.dnn.readNetFromONNX(args.search_net) |
||||
search_net.setPreferableBackend(args.backend) |
||||
search_net.setPreferableTarget(args.target) |
||||
rpn_head = cv.dnn.readNetFromONNX(args.rpn_head) |
||||
rpn_head.setPreferableBackend(args.backend) |
||||
rpn_head.setPreferableTarget(args.target) |
||||
model = ModelBuilder(target_net, search_net, rpn_head) |
||||
tracker = SiamRPNTracker(model) |
||||
|
||||
first_frame = True |
||||
cv.namedWindow('SiamRPN++ Tracker', cv.WINDOW_AUTOSIZE) |
||||
for frame in get_frames(args.input_video): |
||||
if first_frame: |
||||
try: |
||||
init_rect = cv.selectROI('SiamRPN++ Tracker', frame, False, False) |
||||
except: |
||||
exit() |
||||
tracker.init(frame, init_rect) |
||||
first_frame = False |
||||
else: |
||||
outputs = tracker.track(frame) |
||||
bbox = list(map(int, outputs['bbox'])) |
||||
x,y,w,h = bbox |
||||
cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3) |
||||
cv.imshow('SiamRPN++ Tracker', frame) |
||||
key = cv.waitKey(1) |
||||
if key == ord("q"): |
||||
break |
||||
|
||||
if __name__ == '__main__': |
||||
main() |
Loading…
Reference in new issue