|
|
|
@ -2532,29 +2532,29 @@ double cv::solvePoly( InputArray _coeffs0, OutputArray _roots0, int maxIters ) |
|
|
|
|
for( j = 0; j < square_root_times; j++) |
|
|
|
|
{ |
|
|
|
|
num.re = old_num_re*old_num_re + old_num_im*old_num_im; |
|
|
|
|
num.re = std::sqrt(num.re); |
|
|
|
|
num.re = sqrt(num.re); |
|
|
|
|
num.re += old_num_re; |
|
|
|
|
num.im = num.re - old_num_re; |
|
|
|
|
num.re /= 2; |
|
|
|
|
num.re = std::sqrt(num.re); |
|
|
|
|
num.re = sqrt(num.re); |
|
|
|
|
|
|
|
|
|
num.im /= 2; |
|
|
|
|
num.im = std::sqrt(num.im); |
|
|
|
|
num.im = sqrt(num.im); |
|
|
|
|
if( old_num_re < 0 ) num.im = -num.im; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( num_same_root % 2 != 0){ |
|
|
|
|
Mat cube_coefs(4, 1, CV_64FC1); |
|
|
|
|
Mat cube_roots(3, 1, CV_64FC2); |
|
|
|
|
cube_coefs.at<double>(3) = -(std::pow(old_num_re, 3)); |
|
|
|
|
cube_coefs.at<double>(2) = -(15*std::pow(old_num_re, 2) + 27*std::pow(old_num_im, 2)); |
|
|
|
|
cube_coefs.at<double>(3) = -(pow(old_num_re, 3)); |
|
|
|
|
cube_coefs.at<double>(2) = -(15*pow(old_num_re, 2) + 27*pow(old_num_im, 2)); |
|
|
|
|
cube_coefs.at<double>(1) = -48*old_num_re; |
|
|
|
|
cube_coefs.at<double>(0) = 64; |
|
|
|
|
cv::solveCubic(cube_coefs, cube_roots); |
|
|
|
|
solveCubic(cube_coefs, cube_roots); |
|
|
|
|
|
|
|
|
|
num.re = std::pow(std::abs(cube_roots.at<double>(0)), 1/3); |
|
|
|
|
if(cube_roots.at<double>(0) < 0) num.re = -num.re; |
|
|
|
|
num.im = std::sqrt(std::pow(num.re, 2) / 3 - old_num_re / (3*num.re)); |
|
|
|
|
if(cube_roots.at<double>(0) >= 0) num.re = pow(cube_roots.at<double>(0), 1./3); |
|
|
|
|
else num.re = -pow(-cube_roots.at<double>(0), 1./3); |
|
|
|
|
num.im = sqrt(pow(num.re, 2) / 3 - old_num_re / (3*num.re)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|