dramatic speedup of SVM::predict in the case of linear SVM

pull/669/head
Vadim Pisarevsky 12 years ago
parent 79e0e948a7
commit a06af5ca25
  1. 2
      modules/ml/include/opencv2/ml/ml.hpp
  2. 55
      modules/ml/src/svm.cpp
  3. 3
      samples/cpp/letter_recog.cpp

@ -534,6 +534,8 @@ protected:
virtual void write_params( CvFileStorage* fs ) const;
virtual void read_params( CvFileStorage* fs, CvFileNode* node );
void optimize_linear_svm();
CvSVMParams params;
CvMat* class_labels;
int var_all;

@ -1517,6 +1517,7 @@ bool CvSVM::do_train( int svm_type, int sample_count, int var_count, const float
}
}
optimize_linear_svm();
ok = true;
__END__;
@ -1524,6 +1525,59 @@ bool CvSVM::do_train( int svm_type, int sample_count, int var_count, const float
return ok;
}
void CvSVM::optimize_linear_svm()
{
// we optimize only linear SVM: compress all the support vectors into one.
if( params.kernel_type != LINEAR )
return;
int class_count = class_labels ? class_labels->cols :
params.svm_type == CvSVM::ONE_CLASS ? 1 : 0;
int i, df_count = class_count > 1 ? class_count*(class_count-1)/2 : 1;
CvSVMDecisionFunc* df = decision_func;
for( i = 0; i < df_count; i++ )
{
int sv_count = df[i].sv_count;
if( sv_count != 1 )
break;
}
// if every decision functions uses a single support vector;
// it's already compressed. skip it then.
if( i == df_count )
return;
int var_count = get_var_count();
int sample_size = (int)(var_count*sizeof(sv[0][0]));
float** new_sv = (float**)cvMemStorageAlloc(storage, df_count*sizeof(new_sv[0]));
for( i = 0; i < df_count; i++ )
{
new_sv[i] = (float*)cvMemStorageAlloc(storage, sample_size);
float* dst = new_sv[i];
memset(dst, 0, sample_size);
int j, k, sv_count = df[i].sv_count;
for( j = 0; j < sv_count; j++ )
{
const float* src = class_count > 1 ? sv[df[i].sv_index[j]] : sv[j];
double a = df[i].alpha[j];
for( k = 0; k < var_count; k++ )
dst[k] = (float)(dst[k] + src[k]*a);
}
df[i].sv_count = 1;
df[i].alpha[0] = 1.;
if( class_count > 1 )
df[i].sv_index[0] = i;
}
sv = new_sv;
sv_total = df_count;
}
bool CvSVM::train( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params )
{
@ -2516,6 +2570,7 @@ void CvSVM::read( CvFileStorage* fs, CvFileNode* svm_node )
CV_NEXT_SEQ_ELEM( df_node->data.seq->elem_size, reader );
}
optimize_linear_svm();
create_kernel();
__END__;

@ -691,7 +691,10 @@ int build_svm_classifier( char* data_filename )
CvMat *result = cvCreateMat(1, nsamples_all - ntrain_samples, CV_32FC1);
printf("Classification (may take a few minutes)...\n");
double t = (double)cvGetTickCount();
svm.predict(&sample, result);
t = (double)cvGetTickCount() - t;
printf("Prediction type: %gms\n", t/(cvGetTickFrequency()*1000.));
int true_resp = 0;
for (int i = 0; i < nsamples_all - ntrain_samples; i++)

Loading…
Cancel
Save