mirror of https://github.com/opencv/opencv.git
Merge pull request #12147 from D-Alex:master
* add new chessboard detector The chessboar detector is based on the paper. Accurate Detection and Localization of Checkerboard Corners for Calibration Alexander Duda, Udo Frese British Machine Vision Conference, o.A., 2018. It utilizes point symmetry of checkerboard corners in combination with a localized Radon transform approximated by box filters to achieve high performance even on large images. Here, tests have shown that the ability to localize checkerboard corners is close to the theoretical limit of 1/100 of a pixel while being considerably less sensitive to image noise than standard methods. * chessboard: add reference to bibtex file * chessboard: add dependency to opencv_flann * fix: test chesscorners. It is valid to return an empty list In case no chessboard was detected it should be valid for the detector to return an empty list. For simplifcation, it should be allowed to return any number of corners if they are flagged as not found. * fix: opencv.bib remove empty lines * fix: doc findChessboardCorners replace cvSize with cv::Size * chessboard tests: factor out logic selecting detector * chessboard: add unit test for findChessboardCorners2 This is includes a new chessboard generator which supports subpix corners with high accuracy by wrapping an optimal chessboard using wrapPerspective. * fix: chessboard unit test - overwrite of default parameter flag of findCirclesGrid * chessboard: remove trailing whitespace * chessboard: fix debug drawing * chessboard: fix some issues during code review * chessboard: normalize asymmetric chessboard * chessboard: fix float double warning * remove trailing whitespace * chessboards: fix compiler warnings * chessboards: fix compiler warnings * checkerboard: some performance improvements * chessboard: remove NULL macros for language bindinges from internal headers * chessboard: shorten license terms * chessboard: remove unused internal method * chessboard: set helper functions to static * chessboard: fix normalizePoints1D using unshifted points * chessboard: remove wrongly copied text * chessboard: use CV_CheckTypeEQ macro * chessboard: comment all NaN checks * chessboard: use consistent color conversion * chessboard: use CheckChannelEQ macro * chessboard: assume gray color image for internal methods * chessboard: use std::swap * chessboard: use Mat.dataend * chessboard: fix compiler warnings * chessboard: replace some checks witch CV_CHECK macro * chessboard: fix comparison function for partial sort * chessboard: small cleanup * chessboard: use short license header * chessboard: rename findChessboard2 to findChessboardSB * chessboard: fix type in unit testpull/12539/head
parent
87b5737293
commit
a024593fa6
7 changed files with 4175 additions and 18 deletions
@ -1,2 +1,2 @@ |
||||
set(the_description "Camera Calibration and 3D Reconstruction") |
||||
ocv_define_module(calib3d opencv_imgproc opencv_features2d WRAP java python) |
||||
ocv_define_module(calib3d opencv_imgproc opencv_features2d opencv_flann WRAP java python) |
||||
|
After Width: | Height: | Size: 20 KiB |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,770 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef CHESSBOARD_HPP_ |
||||
#define CHESSBOARD_HPP_ |
||||
|
||||
#include "opencv2/core.hpp" |
||||
#include "opencv2/features2d.hpp" |
||||
#include <vector> |
||||
#include <set> |
||||
#include <map> |
||||
|
||||
namespace cv { |
||||
namespace details{ |
||||
/**
|
||||
* \brief Fast point sysmetric cross detector based on a localized radon transformation |
||||
*/ |
||||
class FastX : public cv::Feature2D |
||||
{ |
||||
public: |
||||
struct Parameters |
||||
{ |
||||
float strength; //!< minimal strength of a valid junction in dB
|
||||
float resolution; //!< angle resolution in radians
|
||||
int branches; //!< the number of branches
|
||||
int min_scale; //!< scale level [0..8]
|
||||
int max_scale; //!< scale level [0..8]
|
||||
bool filter; //!< post filter feature map to improve impulse response
|
||||
bool super_resolution; //!< up-sample
|
||||
|
||||
Parameters() |
||||
{ |
||||
strength = 40; |
||||
resolution = float(M_PI*0.25); |
||||
branches = 2; |
||||
min_scale = 2; |
||||
max_scale = 5; |
||||
super_resolution = 1; |
||||
filter = true; |
||||
} |
||||
}; |
||||
|
||||
public: |
||||
FastX(const Parameters &config = Parameters()); |
||||
virtual ~FastX(){}; |
||||
|
||||
void reconfigure(const Parameters ¶); |
||||
|
||||
//declaration to be wrapped by rbind
|
||||
void detect(cv::InputArray image,std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::Mat())override |
||||
{cv::Feature2D::detect(image.getMat(),keypoints,mask.getMat());} |
||||
|
||||
virtual void detectAndCompute(cv::InputArray image, |
||||
cv::InputArray mask, |
||||
std::vector<cv::KeyPoint>& keypoints, |
||||
cv::OutputArray descriptors, |
||||
bool useProvidedKeyPoints = false)override; |
||||
|
||||
void detectImpl(const cv::Mat& image, |
||||
std::vector<cv::KeyPoint>& keypoints, |
||||
std::vector<cv::Mat> &feature_maps, |
||||
const cv::Mat& mask=cv::Mat())const; |
||||
|
||||
void detectImpl(const cv::Mat& image, |
||||
std::vector<cv::Mat> &rotated_images, |
||||
std::vector<cv::Mat> &feature_maps, |
||||
const cv::Mat& mask=cv::Mat())const; |
||||
|
||||
void findKeyPoints(const std::vector<cv::Mat> &feature_map, |
||||
std::vector<cv::KeyPoint>& keypoints, |
||||
const cv::Mat& mask = cv::Mat())const; |
||||
|
||||
std::vector<std::vector<float> > calcAngles(const std::vector<cv::Mat> &rotated_images, |
||||
std::vector<cv::KeyPoint> &keypoints)const; |
||||
// define pure virtual methods
|
||||
virtual int descriptorSize()const override{return 0;}; |
||||
virtual int descriptorType()const override{return 0;}; |
||||
virtual void operator()( cv::InputArray image, cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints, cv::OutputArray descriptors, bool useProvidedKeypoints=false )const |
||||
{ |
||||
descriptors.clear(); |
||||
detectImpl(image.getMat(),keypoints,mask); |
||||
if(!useProvidedKeypoints) // suppress compiler warning
|
||||
return; |
||||
return; |
||||
} |
||||
|
||||
protected: |
||||
virtual void computeImpl( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors)const |
||||
{ |
||||
descriptors = cv::Mat(); |
||||
detectImpl(image,keypoints); |
||||
} |
||||
|
||||
private: |
||||
void detectImpl(const cv::Mat& _src, std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask)const; |
||||
virtual void detectImpl(cv::InputArray image, std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::noArray())const; |
||||
|
||||
void rotate(float angle,const cv::Mat &img,cv::Size size,cv::Mat &out)const; |
||||
void calcFeatureMap(const cv::Mat &images,cv::Mat& out)const; |
||||
|
||||
private: |
||||
Parameters parameters; |
||||
}; |
||||
|
||||
/**
|
||||
* \brief Ellipse class
|
||||
*/ |
||||
class Ellipse |
||||
{ |
||||
public: |
||||
Ellipse(); |
||||
Ellipse(const cv::Point2f ¢er, const cv::Size2f &axes, float angle); |
||||
Ellipse(const Ellipse &other); |
||||
|
||||
|
||||
void draw(cv::InputOutputArray img,const cv::Scalar &color = cv::Scalar::all(120))const; |
||||
bool contains(const cv::Point2f &pt)const; |
||||
cv::Point2f getCenter()const; |
||||
const cv::Size2f &getAxes()const; |
||||
|
||||
private: |
||||
cv::Point2f center; |
||||
cv::Size2f axes; |
||||
float angle,cosf,sinf; |
||||
}; |
||||
|
||||
/**
|
||||
* \brief Chessboard corner detector |
||||
* |
||||
* The detectors tries to find all chessboard corners of an imaged |
||||
* chessboard and returns them as an ordered vector of KeyPoints. |
||||
* Thereby, the left top corner has index 0 and the bottom right |
||||
* corner n*m-1. |
||||
*/ |
||||
class Chessboard: public cv::Feature2D |
||||
{ |
||||
public: |
||||
static const int DUMMY_FIELD_SIZE = 100; // in pixel
|
||||
|
||||
/**
|
||||
* \brief Configuration of a chessboard corner detector |
||||
* |
||||
*/ |
||||
struct Parameters |
||||
{ |
||||
cv::Size chessboard_size; //!< size of the chessboard
|
||||
int min_scale; //!< scale level [0..8]
|
||||
int max_scale; //!< scale level [0..8]
|
||||
int max_points; //!< maximal number of points regarded
|
||||
int max_tests; //!< maximal number of tested hypothesis
|
||||
bool super_resolution; //!< use super-repsolution for chessboard detection
|
||||
bool larger; //!< indicates if larger boards should be returned
|
||||
|
||||
Parameters() |
||||
{ |
||||
chessboard_size = cv::Size(9,6); |
||||
min_scale = 2; |
||||
max_scale = 4; |
||||
super_resolution = true; |
||||
max_points = 400; |
||||
max_tests = 100; |
||||
larger = false; |
||||
} |
||||
|
||||
Parameters(int scale,int _max_points): |
||||
min_scale(scale), |
||||
max_scale(scale), |
||||
max_points(_max_points) |
||||
{ |
||||
chessboard_size = cv::Size(9,6); |
||||
} |
||||
}; |
||||
|
||||
|
||||
/**
|
||||
* \brief Gets the 3D objects points for the chessboard assuming the |
||||
* left top corner is located at the origin. |
||||
* |
||||
* \param[in] pattern_size Number of rows and cols of the pattern |
||||
* \param[in] cell_size Size of one cell |
||||
* |
||||
* \returns Returns the object points as CV_32FC3 |
||||
*/ |
||||
static cv::Mat getObjectPoints(const cv::Size &pattern_size,float cell_size); |
||||
|
||||
/**
|
||||
* \brief Class for searching and storing chessboard corners. |
||||
* |
||||
* The search is based on a feature map having strong pixel |
||||
* values at positions where a chessboard corner is located. |
||||
* |
||||
* The board must be rectangular but supports empty cells |
||||
* |
||||
*/ |
||||
class Board |
||||
{ |
||||
public: |
||||
/**
|
||||
* \brief Estimates the position of the next point on a line using cross ratio constrain |
||||
* |
||||
* cross ratio: |
||||
* d12/d34 = d13/d24 |
||||
* |
||||
* point order on the line: |
||||
* pt1 --> pt2 --> pt3 --> pt4 |
||||
* |
||||
* \param[in] pt1 First point coordinate |
||||
* \param[in] pt2 Second point coordinate |
||||
* \param[in] pt3 Third point coordinate |
||||
* \param[out] pt4 Forth point coordinate |
||||
* |
||||
*/ |
||||
static bool estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2,cv::Point2f &p3); |
||||
|
||||
// using 1D homography
|
||||
static bool estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3, cv::Point2f &p4); |
||||
|
||||
/**
|
||||
* \brief Checks if all points of a row or column have a valid cross ratio constraint |
||||
* |
||||
* cross ratio: |
||||
* d12/d34 = d13/d24 |
||||
* |
||||
* point order on the row/column: |
||||
* pt1 --> pt2 --> pt3 --> pt4 |
||||
* |
||||
* \param[in] points THe points of the row/column |
||||
* |
||||
*/ |
||||
static bool checkRowColumn(const std::vector<cv::Point2f> &points); |
||||
|
||||
/**
|
||||
* \brief Estimates the search area for the next point on the line using cross ratio |
||||
* |
||||
* point order on the line: |
||||
* (p0) --> p1 --> p2 --> p3 --> search area |
||||
* |
||||
* \param[in] p1 First point coordinate |
||||
* \param[in] p2 Second point coordinate |
||||
* \param[in] p3 Third point coordinate |
||||
* \param[in] p Percentage of d34 used for the search area width and height [0..1] |
||||
* \param[out] ellipse The search area |
||||
* \param[in] p0 optional point to improve accuracy |
||||
* |
||||
* \return Returns false if no search area can be calculated |
||||
* |
||||
*/ |
||||
static bool estimateSearchArea(const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3,float p, |
||||
Ellipse &ellipse,const cv::Point2f *p0 =NULL); |
||||
|
||||
/**
|
||||
* \brief Estimates the search area for a specific point based on the given homography |
||||
* |
||||
* \param[in] H homography descriping the transformation from ideal board to real one |
||||
* \param[in] row Row of the point |
||||
* \param[in] col Col of the point |
||||
* \param[in] p Percentage [0..1] |
||||
* |
||||
* \return Returns false if no search area can be calculated |
||||
* |
||||
*/ |
||||
static Ellipse estimateSearchArea(cv::Mat H,int row, int col,float p,int field_size = DUMMY_FIELD_SIZE); |
||||
|
||||
/**
|
||||
* \brief Searches for the maximum in a given search area |
||||
* |
||||
* \param[in] map feature map |
||||
* \param[in] ellipse search area |
||||
* \param[in] min_val Minimum value of the maximum to be accepted as maximum |
||||
* |
||||
* \return Returns a negative value if all points are outside the ellipse |
||||
* |
||||
*/ |
||||
static float findMaxPoint(cv::flann::Index &index,const cv::Mat &data,const Ellipse &ellipse,float white_angle,float black_angle,cv::Point2f &pt); |
||||
|
||||
/**
|
||||
* \brief Searches for the next point using cross ratio constrain |
||||
* |
||||
* \param[in] index flann index |
||||
* \param[in] data extended flann data |
||||
* \param[in] pt1 |
||||
* \param[in] pt2 |
||||
* \param[in] pt3 |
||||
* \param[in] white_angle |
||||
* \param[in] black_angle |
||||
* \param[in] min_response |
||||
* \param[out] point The resulting point |
||||
* |
||||
* \return Returns false if no point could be found |
||||
* |
||||
*/ |
||||
static bool findNextPoint(cv::flann::Index &index,const cv::Mat &data, |
||||
const cv::Point2f &pt1,const cv::Point2f &pt2, const cv::Point2f &pt3, |
||||
float white_angle,float black_angle,float min_response,cv::Point2f &point); |
||||
|
||||
/**
|
||||
* \brief Creates a new Board object |
||||
* |
||||
*/ |
||||
Board(float white_angle=0,float black_angle=0); |
||||
Board(const cv::Size &size, const std::vector<cv::Point2f> &points,float white_angle=0,float black_angle=0); |
||||
Board(const Chessboard::Board &other); |
||||
virtual ~Board(); |
||||
|
||||
Board& operator=(const Chessboard::Board &other); |
||||
|
||||
/**
|
||||
* \brief Draws the corners into the given image |
||||
* |
||||
* \param[in] m The image |
||||
* \param[out] m The resulting image |
||||
* \param[in] H optional homography to calculate search area |
||||
* |
||||
*/ |
||||
void draw(cv::InputArray m,cv::OutputArray out,cv::InputArray H=cv::Mat())const; |
||||
|
||||
/**
|
||||
* \brief Estimates the pose of the chessboard |
||||
* |
||||
*/ |
||||
bool estimatePose(const cv::Size2f &real_size,cv::InputArray _K,cv::OutputArray rvec,cv::OutputArray tvec)const; |
||||
|
||||
/**
|
||||
* \brief Clears all internal data of the object |
||||
* |
||||
*/ |
||||
void clear(); |
||||
|
||||
/**
|
||||
* \brief Returns the angle of the black diagnonale |
||||
* |
||||
*/ |
||||
float getBlackAngle()const; |
||||
|
||||
/**
|
||||
* \brief Returns the angle of the black diagnonale |
||||
* |
||||
*/ |
||||
float getWhiteAngle()const; |
||||
|
||||
/**
|
||||
* \brief Initializes a 3x3 grid from 9 corner coordinates |
||||
* |
||||
* All points must be ordered: |
||||
* p0 p1 p2 |
||||
* p3 p4 p5 |
||||
* p6 p7 p8 |
||||
* |
||||
* \param[in] points vector of points |
||||
* |
||||
* \return Returns false if the grid could not be initialized |
||||
*/ |
||||
bool init(const std::vector<cv::Point2f> points); |
||||
|
||||
/**
|
||||
* \brief Returns true if the board is empty |
||||
* |
||||
*/ |
||||
bool isEmpty() const; |
||||
|
||||
/**
|
||||
* \brief Returns all board corners as ordered vector |
||||
* |
||||
* The left top corner has index 0 and the bottom right |
||||
* corner rows*cols-1. All corners which only belong to |
||||
* empty cells are returned as NaN. |
||||
*/ |
||||
std::vector<cv::Point2f> getCorners(bool ball=true) const; |
||||
|
||||
/**
|
||||
* \brief Returns all board corners as ordered vector of KeyPoints |
||||
* |
||||
* The left top corner has index 0 and the bottom right |
||||
* corner rows*cols-1. |
||||
* |
||||
* \param[in] ball if set to false only non empty points are returned |
||||
* |
||||
*/ |
||||
std::vector<cv::KeyPoint> getKeyPoints(bool ball=true) const; |
||||
|
||||
/**
|
||||
* \brief Returns the centers of the chessboard cells |
||||
* |
||||
* The left top corner has index 0 and the bottom right |
||||
* corner (rows-1)*(cols-1)-1. |
||||
* |
||||
*/ |
||||
std::vector<cv::Point2f> getCellCenters() const; |
||||
|
||||
/**
|
||||
* \brief Estimates the homography between an ideal board |
||||
* and reality based on the already recovered points |
||||
* |
||||
* \param[in] rect selecting a subset of the already recovered points |
||||
* \param[in] field_size The field size of the ideal board |
||||
* |
||||
*/ |
||||
cv::Mat estimateHomography(cv::Rect rect,int field_size = DUMMY_FIELD_SIZE)const; |
||||
|
||||
/**
|
||||
* \brief Estimates the homography between an ideal board |
||||
* and reality based on the already recovered points |
||||
* |
||||
* \param[in] field_size The field size of the ideal board |
||||
* |
||||
*/ |
||||
cv::Mat estimateHomography(int field_size = DUMMY_FIELD_SIZE)const; |
||||
|
||||
/**
|
||||
* \brief Returns the size of the board |
||||
* |
||||
*/ |
||||
cv::Size getSize() const; |
||||
|
||||
/**
|
||||
* \brief Returns the number of cols |
||||
* |
||||
*/ |
||||
size_t colCount() const; |
||||
|
||||
/**
|
||||
* \brief Returns the number of rows |
||||
* |
||||
*/ |
||||
size_t rowCount() const; |
||||
|
||||
/**
|
||||
* \brief Returns the inner contour of the board inlcuding only valid corners |
||||
* |
||||
* \info the contour might be non squared if not all points of the board are defined |
||||
* |
||||
*/ |
||||
std::vector<cv::Point2f> getContour()const; |
||||
|
||||
|
||||
/**
|
||||
* \brief Grows the board in all direction until no more corners are found in the feature map |
||||
* |
||||
* \param[in] data CV_32FC1 data of the flann index |
||||
* \param[in] flann_index flann index |
||||
* |
||||
* \returns the number of grows |
||||
*/ |
||||
int grow(const cv::Mat &data,cv::flann::Index &flann_index); |
||||
|
||||
/**
|
||||
* \brief Validates all corners using guided search based on the given homography |
||||
* |
||||
* \param[in] data CV_32FC1 data of the flann index |
||||
* \param[in] flann_index flann index |
||||
* \param[in] h Homography describing the transformation from ideal board to the real one |
||||
* \param[in] min_response Min response |
||||
* |
||||
* \returns the number of valid corners |
||||
*/ |
||||
int validateCorners(const cv::Mat &data,cv::flann::Index &flann_index,const cv::Mat &h,float min_response=0); |
||||
|
||||
/**
|
||||
* \brief check that no corner is used more than once |
||||
* |
||||
* \returns Returns false if a corner is used more than once |
||||
*/ |
||||
bool checkUnique()const; |
||||
|
||||
/**
|
||||
* \brief Returns false if the angles of the contour are smaller than 35° |
||||
* |
||||
*/ |
||||
bool validateContour()const; |
||||
|
||||
/**
|
||||
* \brief Grows the board to the left by adding one column. |
||||
* |
||||
* \param[in] map CV_32FC1 feature map |
||||
* |
||||
* \returns Returns false if the feature map has no maxima at the requested positions |
||||
*/ |
||||
bool growLeft(const cv::Mat &map,cv::flann::Index &flann_index); |
||||
void growLeft(); |
||||
|
||||
/**
|
||||
* \brief Grows the board to the top by adding one row. |
||||
* |
||||
* \param[in] map CV_32FC1 feature map |
||||
* |
||||
* \returns Returns false if the feature map has no maxima at the requested positions |
||||
*/ |
||||
bool growTop(const cv::Mat &map,cv::flann::Index &flann_index); |
||||
void growTop(); |
||||
|
||||
/**
|
||||
* \brief Grows the board to the right by adding one column. |
||||
* |
||||
* \param[in] map CV_32FC1 feature map |
||||
* |
||||
* \returns Returns false if the feature map has no maxima at the requested positions |
||||
*/ |
||||
bool growRight(const cv::Mat &map,cv::flann::Index &flann_index); |
||||
void growRight(); |
||||
|
||||
/**
|
||||
* \brief Grows the board to the bottom by adding one row. |
||||
* |
||||
* \param[in] map CV_32FC1 feature map |
||||
* |
||||
* \returns Returns false if the feature map has no maxima at the requested positions |
||||
*/ |
||||
bool growBottom(const cv::Mat &map,cv::flann::Index &flann_index); |
||||
void growBottom(); |
||||
|
||||
/**
|
||||
* \brief Adds one column on the left side |
||||
* |
||||
* \param[in] points The corner coordinates |
||||
* |
||||
*/ |
||||
void addColumnLeft(const std::vector<cv::Point2f> &points); |
||||
|
||||
/**
|
||||
* \brief Adds one column at the top |
||||
* |
||||
* \param[in] points The corner coordinates |
||||
* |
||||
*/ |
||||
void addRowTop(const std::vector<cv::Point2f> &points); |
||||
|
||||
/**
|
||||
* \brief Adds one column on the right side |
||||
* |
||||
* \param[in] points The corner coordinates |
||||
* |
||||
*/ |
||||
void addColumnRight(const std::vector<cv::Point2f> &points); |
||||
|
||||
/**
|
||||
* \brief Adds one row at the bottom |
||||
* |
||||
* \param[in] points The corner coordinates |
||||
* |
||||
*/ |
||||
void addRowBottom(const std::vector<cv::Point2f> &points); |
||||
|
||||
/**
|
||||
* \brief Rotates the board 90° degrees to the left |
||||
*/ |
||||
void rotateLeft(); |
||||
|
||||
/**
|
||||
* \brief Rotates the board 90° degrees to the right |
||||
*/ |
||||
void rotateRight(); |
||||
|
||||
/**
|
||||
* \brief Flips the board along its local x(width) coordinate direction |
||||
*/ |
||||
void flipVertical(); |
||||
|
||||
/**
|
||||
* \brief Flips the board along its local y(height) coordinate direction |
||||
*/ |
||||
void flipHorizontal(); |
||||
|
||||
/**
|
||||
* \brief Flips and rotates the board so that the anlge of |
||||
* either the black or white diagonale is bigger than the x |
||||
* and y axis of the board and from a right handed |
||||
* coordinate system |
||||
*/ |
||||
void normalizeOrientation(bool bblack=true); |
||||
|
||||
/**
|
||||
* \brief Exchanges the stored board with the board stored in other |
||||
*/ |
||||
void swap(Chessboard::Board &other); |
||||
|
||||
bool operator==(const Chessboard::Board& other) const {return rows*cols == other.rows*other.cols;}; |
||||
bool operator< (const Chessboard::Board& other) const {return rows*cols < other.rows*other.cols;}; |
||||
bool operator> (const Chessboard::Board& other) const {return rows*cols > other.rows*other.cols;}; |
||||
bool operator>= (const cv::Size& size)const { return rows*cols >= size.width*size.height; }; |
||||
|
||||
/**
|
||||
* \brief Returns a specific corner |
||||
* |
||||
* \info raises runtime_error if row col does not exists |
||||
*/ |
||||
cv::Point2f& getCorner(int row,int col); |
||||
|
||||
/**
|
||||
* \brief Returns true if the cell is empty meaning at least one corner is NaN |
||||
*/ |
||||
bool isCellEmpty(int row,int col); |
||||
|
||||
/**
|
||||
* \brief Returns the mapping from all corners idx to only valid corners idx |
||||
*/ |
||||
std::map<int,int> getMapping()const; |
||||
|
||||
/**
|
||||
* \brief Estimates rotation of the board around the camera axis |
||||
*/ |
||||
double estimateRotZ()const; |
||||
|
||||
/**
|
||||
* \brief Returns true if the cell is black |
||||
* |
||||
*/ |
||||
bool isCellBlack(int row,int cola)const; |
||||
|
||||
private: |
||||
// stores one cell
|
||||
// in general a cell is initialized by the Board so that:
|
||||
// * all corners are always pointing to a valid cv::Point2f
|
||||
// * depending on the position left,top,right and bottom might be set to NaN
|
||||
// * A cell is empty if at least one corner is NaN
|
||||
struct Cell |
||||
{ |
||||
cv::Point2f *top_left,*top_right,*bottom_right,*bottom_left; // corners
|
||||
Cell *left,*top,*right,*bottom; // neighbouring cells
|
||||
bool black; // set to true if cell is black
|
||||
Cell(); |
||||
bool empty()const; // indicates if the cell is empty (one of its corners has NaN)
|
||||
int getRow()const; |
||||
int getCol()const; |
||||
}; |
||||
|
||||
// corners
|
||||
enum CornerIndex |
||||
{ |
||||
TOP_LEFT, |
||||
TOP_RIGHT, |
||||
BOTTOM_RIGHT, |
||||
BOTTOM_LEFT |
||||
}; |
||||
|
||||
Cell* getCell(int row,int column); // returns a specific cell
|
||||
const Cell* getCell(int row,int column)const; // returns a specific cell
|
||||
void drawEllipses(const std::vector<Ellipse> &ellipses); |
||||
|
||||
// Iterator for iterating over board corners
|
||||
class PointIter |
||||
{ |
||||
public: |
||||
PointIter(Cell *cell,CornerIndex corner_index); |
||||
PointIter(const PointIter &other); |
||||
void operator=(const PointIter &other); |
||||
bool valid() const; // returns if the pointer is pointing to a cell
|
||||
|
||||
bool left(bool check_empty=false); // moves one corner to the left or returns false
|
||||
bool right(bool check_empty=false); // moves one corner to the right or returns false
|
||||
bool bottom(bool check_empty=false); // moves one corner to the bottom or returns false
|
||||
bool top(bool check_empty=false); // moves one corner to the top or returns false
|
||||
bool checkCorner()const; // returns ture if the current corner belongs to at least one
|
||||
// none empty cell
|
||||
bool isNaN()const; // returns true if the currnet corner is NaN
|
||||
|
||||
const cv::Point2f* operator*() const; // current corner coordinate
|
||||
cv::Point2f* operator*(); // current corner coordinate
|
||||
const cv::Point2f* operator->() const; // current corner coordinate
|
||||
cv::Point2f* operator->(); // current corner coordinate
|
||||
|
||||
Cell *getCell(); // current cell
|
||||
private: |
||||
CornerIndex corner_index; |
||||
Cell *cell; |
||||
}; |
||||
|
||||
std::vector<Cell*> cells; // storage for all board cells
|
||||
std::vector<cv::Point2f*> corners; // storage for all corners
|
||||
Cell *top_left; // pointer to the top left corner of the board in its local coordinate system
|
||||
int rows; // number of row cells
|
||||
int cols; // number of col cells
|
||||
float white_angle,black_angle; |
||||
}; |
||||
public: |
||||
|
||||
/**
|
||||
* \brief Creates a chessboard corner detectors |
||||
* |
||||
* \param[in] config Configuration used to detect chessboard corners |
||||
* |
||||
*/ |
||||
Chessboard(const Parameters &config = Parameters()); |
||||
virtual ~Chessboard(); |
||||
void reconfigure(const Parameters &config = Parameters()); |
||||
Parameters getPara()const; |
||||
|
||||
/*
|
||||
* \brief Detects chessboard corners in the given image. |
||||
* |
||||
* The detectors tries to find all chessboard corners of an imaged |
||||
* chessboard and returns them as an ordered vector of KeyPoints. |
||||
* Thereby, the left top corner has index 0 and the bottom right |
||||
* corner n*m-1. |
||||
* |
||||
* \param[in] image The image |
||||
* \param[out] keypoints The detected corners as a vector of ordered KeyPoints |
||||
* \param[in] mask Currently not supported |
||||
* |
||||
*/ |
||||
void detect(cv::InputArray image,std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::Mat())override |
||||
{cv::Feature2D::detect(image.getMat(),keypoints,mask.getMat());} |
||||
|
||||
virtual void detectAndCompute(cv::InputArray image,cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints,cv::OutputArray descriptors, |
||||
bool useProvidedKeyPoints = false)override; |
||||
|
||||
/*
|
||||
* \brief Detects chessboard corners in the given image. |
||||
* |
||||
* The detectors tries to find all chessboard corners of an imaged |
||||
* chessboard and returns them as an ordered vector of KeyPoints. |
||||
* Thereby, the left top corner has index 0 and the bottom right |
||||
* corner n*m-1. |
||||
* |
||||
* \param[in] image The image |
||||
* \param[out] keypoints The detected corners as a vector of ordered KeyPoints |
||||
* \param[out] feature_maps The feature map generated by LRJT and used to find the corners |
||||
* \param[in] mask Currently not supported |
||||
* |
||||
*/ |
||||
void detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,const cv::Mat& mask)const; |
||||
Chessboard::Board detectImpl(const cv::Mat& image,std::vector<cv::Mat> &feature_maps,const cv::Mat& mask)const; |
||||
|
||||
// define pure virtual methods
|
||||
virtual int descriptorSize()const override{return 0;}; |
||||
virtual int descriptorType()const override{return 0;}; |
||||
virtual void operator()( cv::InputArray image, cv::InputArray mask, std::vector<cv::KeyPoint>& keypoints, cv::OutputArray descriptors, bool useProvidedKeypoints=false )const |
||||
{ |
||||
descriptors.clear(); |
||||
detectImpl(image.getMat(),keypoints,mask); |
||||
if(!useProvidedKeypoints) // suppress compiler warning
|
||||
return; |
||||
return; |
||||
} |
||||
|
||||
protected: |
||||
virtual void computeImpl( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors)const |
||||
{ |
||||
descriptors = cv::Mat(); |
||||
detectImpl(image,keypoints); |
||||
} |
||||
|
||||
// indicates why a board could not be initialized for a certain keypoint
|
||||
enum BState |
||||
{ |
||||
MISSING_POINTS = 0, // at least 5 points are needed
|
||||
MISSING_PAIRS = 1, // at least two pairs are needed
|
||||
WRONG_PAIR_ANGLE = 2, // angle between pairs is too small
|
||||
WRONG_CONFIGURATION = 3, // point configuration is wrong and does not belong to a board
|
||||
FOUND_BOARD = 4 // board was found
|
||||
}; |
||||
|
||||
void findKeyPoints(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps, |
||||
std::vector<std::vector<float> > &angles ,const cv::Mat& mask)const; |
||||
cv::Mat buildData(const std::vector<cv::KeyPoint>& keypoints)const; |
||||
std::vector<cv::KeyPoint> getInitialPoints(cv::flann::Index &flann_index,const cv::Mat &data,const cv::KeyPoint ¢er,float white_angle,float black_angle, float min_response = 0)const; |
||||
BState generateBoards(cv::flann::Index &flann_index,const cv::Mat &data, const cv::KeyPoint ¢er, |
||||
float white_angle,float black_angle,float min_response,const cv::Mat &img, |
||||
std::vector<Chessboard::Board> &boards)const; |
||||
|
||||
private: |
||||
void detectImpl(const cv::Mat&,std::vector<cv::KeyPoint>&, const cv::Mat& mast =cv::Mat())const; |
||||
virtual void detectImpl(cv::InputArray image, std::vector<cv::KeyPoint>& keypoints, cv::InputArray mask=cv::noArray())const; |
||||
|
||||
private: |
||||
Parameters parameters; // storing the configuration of the detector
|
||||
}; |
||||
}} // end namespace details and cv
|
||||
|
||||
#endif |
Loading…
Reference in new issue