fixed minor bug in gpu module, added first version of sum

pull/13383/head
Alexey Spizhevoy 14 years ago
parent d557c800a7
commit 9f80317ffa
  1. 4
      modules/gpu/src/cuda/imgproc.cu
  2. 184
      modules/gpu/src/cuda/mathfunc.cu
  3. 11
      modules/gpu/src/match_template.cpp

@ -719,7 +719,7 @@ namespace cv { namespace gpu { namespace imgproc
////////////////////////////// Column Sum //////////////////////////////////////
__global__ void columnSumKernel_32F(int cols, int rows, const PtrStep src, const PtrStep dst)
__global__ void column_sum_kernel_32F(int cols, int rows, const PtrStep src, const PtrStep dst)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
@ -745,7 +745,7 @@ namespace cv { namespace gpu { namespace imgproc
dim3 threads(256);
dim3 grid(divUp(src.cols, threads.x));
columnSumKernel_32F<<<grid, threads>>>(src.cols, src.rows, src, dst);
column_sum_kernel_32F<<<grid, threads>>>(src.cols, src.rows, src, dst);
cudaSafeCall(cudaThreadSynchronize());
}

@ -450,6 +450,8 @@ namespace cv { namespace gpu { namespace mathfunc
{
threads = dim3(32, 8);
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
grid.x = min(grid.x, threads.x);
grid.y = min(grid.y, threads.y);
}
@ -662,7 +664,6 @@ namespace cv { namespace gpu { namespace mathfunc
{
minval[0] = (T)sminval[0];
maxval[0] = (T)smaxval[0];
blocks_finished = 0;
}
}
@ -744,6 +745,8 @@ namespace cv { namespace gpu { namespace mathfunc
{
threads = dim3(32, 8);
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
grid.x = min(grid.x, threads.x);
grid.y = min(grid.y, threads.y);
}
@ -1005,7 +1008,6 @@ namespace cv { namespace gpu { namespace mathfunc
maxval[0] = (T)smaxval[0];
minloc[0] = sminloc[0];
maxloc[0] = smaxloc[0];
blocks_finished = 0;
}
}
@ -1102,6 +1104,8 @@ namespace cv { namespace gpu { namespace mathfunc
{
threads = dim3(32, 8);
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
grid.x = min(grid.x, threads.x);
grid.y = min(grid.y, threads.y);
}
@ -1212,13 +1216,12 @@ namespace cv { namespace gpu { namespace mathfunc
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
scount[tid] = tid < size ? count[tid] : 0;
sum_in_smem<nthreads, unsigned int>(scount, tid);
__syncthreads();
if (tid == 0)
{
sum_in_smem<nthreads, unsigned int>(scount, tid);
if (tid == 0)
count[0] = scount[0];
blocks_finished = 0;
}
}
@ -1409,4 +1412,171 @@ namespace cv { namespace gpu { namespace mathfunc
template void max_gpu<int >(const DevMem2D_<int>& src1, double src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void max_gpu<float >(const DevMem2D_<float>& src1, double src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void max_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
//////////////////////////////////////////////////////////////////////////////
// Sum
namespace sum
{
__constant__ int ctwidth;
__constant__ int ctheight;
__device__ unsigned int blocks_finished = 0;
const int threads_x = 32;
const int threads_y = 8;
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
{
threads = dim3(threads_x, threads_y);
grid = dim3(divUp(cols, threads.x * threads.y),
divUp(rows, threads.y * threads.x));
grid.x = min(grid.x, threads.x);
grid.y = min(grid.y, threads.y);
}
template <typename T>
void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows)
{
dim3 threads, grid;
estimate_thread_cfg(cols, rows, threads, grid);
bufcols = grid.x * grid.y * sizeof(T);
bufrows = 1;
}
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
{
int twidth = divUp(divUp(cols, grid.x), threads.x);
int theight = divUp(divUp(rows, grid.y), threads.y);
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(twidth)));
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight)));
}
template <typename T, int nthreads>
__global__ void sum_kernel(const DevMem2D_<T> src, T* result)
{
__shared__ T smem[nthreads];
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
T sum = 0;
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
{
const T* ptr = src.ptr(y0 + y * blockDim.y);
for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
sum += ptr[x0 + x * blockDim.x];
}
smem[tid] = sum;
__syncthreads();
sum_in_smem<nthreads, T>(smem, tid);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ bool is_last;
if (tid == 0)
{
result[bid] = smem[0];
__threadfence();
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
is_last = (ticket == gridDim.x * gridDim.y - 1);
}
__syncthreads();
if (is_last)
{
smem[tid] = tid < gridDim.x * gridDim.y ? result[tid] : 0;
__syncthreads();
sum_in_smem<nthreads, T>(smem, tid);
if (tid == 0)
{
result[0] = smem[0];
blocks_finished = 0;
}
}
#else
if (tid == 0) result[bid] = smem[0];
#endif
}
template <typename T>
T sum_caller(const DevMem2D_<T> src, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* buf_ = (T*)buf.ptr(0);
sum_kernel<T, threads_x * threads_y><<<grid, threads>>>(src, buf_);
cudaSafeCall(cudaThreadSynchronize());
T sum;
cudaSafeCall(cudaMemcpy(&sum, buf_, sizeof(T), cudaMemcpyDeviceToHost));
return sum;
}
template unsigned char sum_caller<unsigned char>(const DevMem2D_<unsigned char>, PtrStep);
template char sum_caller<char>(const DevMem2D_<char>, PtrStep);
template unsigned short sum_caller<unsigned short>(const DevMem2D_<unsigned short>, PtrStep);
template short sum_caller<short>(const DevMem2D_<short>, PtrStep);
template int sum_caller<int>(const DevMem2D_<int>, PtrStep);
template float sum_caller<float>(const DevMem2D_<float>, PtrStep);
template double sum_caller<double>(const DevMem2D_<double>, PtrStep);
template <typename T, int nthreads>
__global__ void sum_pass2_kernel(T* result, int size)
{
__shared__ T smem[nthreads];
int tid = threadIdx.y * blockDim.x + threadIdx.x;
smem[tid] = tid < size ? result[tid] : 0;
sum_in_smem<nthreads, T>(smem, tid);
if (tid == 0)
result[0] = smem[0];
}
template <typename T>
T sum_multipass_caller(const DevMem2D_<T> src, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* buf_ = (T*)buf.ptr(0);
sum_kernel<T, threads_x * threads_y><<<grid, threads>>>(src, buf_);
sum_pass2_kernel<T, threads_x * threads_y><<<1, threads_x * threads_y>>>(
buf_, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
T sum;
cudaSafeCall(cudaMemcpy(&sum, buf_, sizeof(T), cudaMemcpyDeviceToHost));
return sum;
}
template unsigned char sum_multipass_caller<unsigned char>(const DevMem2D_<unsigned char>, PtrStep);
template char sum_multipass_caller<char>(const DevMem2D_<char>, PtrStep);
template unsigned short sum_multipass_caller<unsigned short>(const DevMem2D_<unsigned short>, PtrStep);
template short sum_multipass_caller<short>(const DevMem2D_<short>, PtrStep);
template int sum_multipass_caller<int>(const DevMem2D_<int>, PtrStep);
template float sum_multipass_caller<float>(const DevMem2D_<float>, PtrStep);
} // namespace sum
}}}

@ -244,17 +244,6 @@ namespace
{
result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
imgproc::matchTemplateNaive_8U_SQDIFF(image, templ, result);
//GpuMat image_sum;
//GpuMat image_sumsq;
//integral(image, image_sum, image_sumsq);
//float templ_sumsq = 0.f;
//matchTemplate_8U_CCORR(image, templ, result);
//imgproc::matchTemplatePrepared_8U_SQDIFF(
// templ.cols, templ.rows, image_sumsq, templ_sumsq, result);
}

Loading…
Cancel
Save