|
|
|
@ -465,31 +465,6 @@ void ONNXImporter::populateNet(Net dstNet) |
|
|
|
|
layerParams.blobs.push_back(-1.0f * blob.reshape(1, 1)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else if (layer_type == "Div") |
|
|
|
|
{ |
|
|
|
|
if (constBlobs.find(node_proto.input(1)) == constBlobs.end()) |
|
|
|
|
{ |
|
|
|
|
layerParams.type = "Eltwise"; |
|
|
|
|
layerParams.set("operation", "div"); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
|
|
|
CV_Assert_N(blob.type() == CV_32F, blob.total()); |
|
|
|
|
if (blob.total() == 1) |
|
|
|
|
{ |
|
|
|
|
layerParams.set("scale", 1.0f / blob.at<float>(0)); |
|
|
|
|
layerParams.type = "Power"; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
layerParams.type = "Scale"; |
|
|
|
|
divide(1.0, blob, blob); |
|
|
|
|
layerParams.blobs.push_back(blob); |
|
|
|
|
layerParams.set("bias_term", false); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else if (layer_type == "Neg") |
|
|
|
|
{ |
|
|
|
|
layerParams.type = "Power"; |
|
|
|
@ -638,24 +613,58 @@ void ONNXImporter::populateNet(Net dstNet) |
|
|
|
|
layerParams.set("bias_term", false); |
|
|
|
|
layerParams.set("num_output", layerParams.blobs[0].size[0]); |
|
|
|
|
} |
|
|
|
|
else if (layer_type == "Mul") |
|
|
|
|
else if (layer_type == "Mul" || layer_type == "Div") |
|
|
|
|
{ |
|
|
|
|
CV_Assert(node_proto.input_size() == 2); |
|
|
|
|
if (layer_id.find(node_proto.input(1)) == layer_id.end()) { |
|
|
|
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
|
|
|
|
|
|
|
|
bool isDiv = layer_type == "Div"; |
|
|
|
|
int constId = -1; |
|
|
|
|
bool haveVariables = false; |
|
|
|
|
for (int i = 0; i < 2; ++i) |
|
|
|
|
{ |
|
|
|
|
if (constBlobs.find(node_proto.input(i)) != constBlobs.end()) |
|
|
|
|
constId = i; |
|
|
|
|
else |
|
|
|
|
haveVariables = true; |
|
|
|
|
} |
|
|
|
|
if (constId != -1 && haveVariables) |
|
|
|
|
{ |
|
|
|
|
Mat blob = getBlob(node_proto, constBlobs, constId); |
|
|
|
|
blob = blob.reshape(1, 1); |
|
|
|
|
if (blob.total() == 1) { |
|
|
|
|
layerParams.set("scale", blob.at<float>(0)); |
|
|
|
|
float coeff = isDiv ? 1.0 / blob.at<float>(0) : blob.at<float>(0); |
|
|
|
|
layerParams.set("scale", coeff); |
|
|
|
|
layerParams.type = "Power"; |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
if (isDiv) |
|
|
|
|
divide(1.0, blob, blob); |
|
|
|
|
layerParams.blobs.push_back(blob); |
|
|
|
|
layerParams.type = "Scale"; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else { |
|
|
|
|
layerParams.type = "Eltwise"; |
|
|
|
|
layerParams.set("operation", "prod"); |
|
|
|
|
layerParams.set("operation", isDiv ? "div" : "prod"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (!haveVariables) |
|
|
|
|
{ |
|
|
|
|
Mat inp0 = getBlob(node_proto, constBlobs, 0); |
|
|
|
|
Mat inp1 = getBlob(node_proto, constBlobs, 1); |
|
|
|
|
if (inp0.size != inp1.size) |
|
|
|
|
CV_Error(Error::StsNotImplemented, "Constant multiply with different shapes"); |
|
|
|
|
|
|
|
|
|
Mat out; |
|
|
|
|
if (isDiv) |
|
|
|
|
divide(inp0, inp1, out); |
|
|
|
|
else |
|
|
|
|
multiply(inp0, inp1, out); |
|
|
|
|
|
|
|
|
|
out = out.reshape(1, inp0.dims, inp0.size); |
|
|
|
|
out.dims = inp0.dims; // to workaround dims == 1
|
|
|
|
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else if (layer_type == "Conv") |
|
|
|
|