diff --git a/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst b/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst index 59bd533e85..faef8d215d 100644 --- a/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst +++ b/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.rst @@ -128,11 +128,11 @@ Finds the camera intrinsic and extrinsic parameters from several views of a cali .. ocv:pyoldfunction:: cv.CalibrateCamera2(objectPoints, imagePoints, pointCounts, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, flags=0)-> None - :param objectPoints: In the new interface it is a vector of vectors of calibration pattern points in the calibration pattern coordinate space. The outer vector contains as many elements as the number of the pattern views. If the same calibration pattern is shown in each view and it is fully visible, all the vectors will be the same. Although, it is possible to use partially occluded patterns, or even different patterns in different views. Then, the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that Z-coordinate of each input object point is 0. + :param objectPoints: In the new interface it is a vector of vectors of calibration pattern points in the calibration pattern coordinate space (e.g. std::vector>). The outer vector contains as many elements as the number of the pattern views. If the same calibration pattern is shown in each view and it is fully visible, all the vectors will be the same. Although, it is possible to use partially occluded patterns, or even different patterns in different views. Then, the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that Z-coordinate of each input object point is 0. In the old interface all the vectors of object points from different views are concatenated together. - :param imagePoints: In the new interface it is a vector of vectors of the projections of calibration pattern points. ``imagePoints.size()`` and ``objectPoints.size()`` and ``imagePoints[i].size()`` must be equal to ``objectPoints[i].size()`` for each ``i``. + :param imagePoints: In the new interface it is a vector of vectors of the projections of calibration pattern points (e.g. std::vector>). ``imagePoints.size()`` and ``objectPoints.size()`` and ``imagePoints[i].size()`` must be equal to ``objectPoints[i].size()`` for each ``i``. In the old interface all the vectors of object points from different views are concatenated together. @@ -144,7 +144,7 @@ Finds the camera intrinsic and extrinsic parameters from several views of a cali :param distCoeffs: Output vector of distortion coefficients :math:`(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6]])` of 4, 5, or 8 elements. - :param rvecs: Output vector of rotation vectors (see :ocv:func:`Rodrigues` ) estimated for each pattern view. That is, each k-th rotation vector together with the corresponding k-th translation vector (see the next output parameter description) brings the calibration pattern from the model coordinate space (in which object points are specified) to the world coordinate space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). + :param rvecs: Output vector of rotation vectors (see :ocv:func:`Rodrigues` ) estimated for each pattern view (e.g. std::vector>). That is, each k-th rotation vector together with the corresponding k-th translation vector (see the next output parameter description) brings the calibration pattern from the model coordinate space (in which object points are specified) to the world coordinate space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). :param tvecs: Output vector of translation vectors estimated for each pattern view.