Before Width: | Height: | Size: 49 KiB After Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 28 KiB After Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 51 KiB |
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 70 KiB After Width: | Height: | Size: 74 KiB |
@ -0,0 +1,247 @@ |
|||||||
|
#include "opencv2/objdetect/objdetect.hpp" |
||||||
|
#include "opencv2/highgui/highgui.hpp" |
||||||
|
#include "opencv2/imgproc/imgproc.hpp" |
||||||
|
|
||||||
|
#include <cctype> |
||||||
|
#include <iostream> |
||||||
|
#include <iterator> |
||||||
|
#include <stdio.h> |
||||||
|
|
||||||
|
using namespace std; |
||||||
|
using namespace cv; |
||||||
|
|
||||||
|
static void help() |
||||||
|
{ |
||||||
|
cout << "\nThis program demonstrates the smile detector.\n" |
||||||
|
"Usage:\n" |
||||||
|
"./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n" |
||||||
|
" [--smile-cascade=[<smile_cascade_path>]]\n" |
||||||
|
" [--scale=<image scale greater or equal to 1, try 2.0 for example. The larger the faster the processing>]\n" |
||||||
|
" [--try-flip]\n" |
||||||
|
" [video_filename|camera_index]\n\n" |
||||||
|
"Example:\n" |
||||||
|
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n" |
||||||
|
"During execution:\n\tHit any key to quit.\n" |
||||||
|
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl; |
||||||
|
} |
||||||
|
|
||||||
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
||||||
|
CascadeClassifier& nestedCascade, |
||||||
|
double scale, bool tryflip ); |
||||||
|
|
||||||
|
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml"; |
||||||
|
string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml"; |
||||||
|
|
||||||
|
|
||||||
|
int main( int argc, const char** argv ) |
||||||
|
{ |
||||||
|
CvCapture* capture = 0; |
||||||
|
Mat frame, frameCopy, image; |
||||||
|
const string scaleOpt = "--scale="; |
||||||
|
size_t scaleOptLen = scaleOpt.length(); |
||||||
|
const string cascadeOpt = "--cascade="; |
||||||
|
size_t cascadeOptLen = cascadeOpt.length(); |
||||||
|
const string nestedCascadeOpt = "--smile-cascade"; |
||||||
|
size_t nestedCascadeOptLen = nestedCascadeOpt.length(); |
||||||
|
const string tryFlipOpt = "--try-flip"; |
||||||
|
size_t tryFlipOptLen = tryFlipOpt.length(); |
||||||
|
string inputName; |
||||||
|
bool tryflip = false; |
||||||
|
|
||||||
|
help(); |
||||||
|
|
||||||
|
CascadeClassifier cascade, nestedCascade; |
||||||
|
double scale = 1; |
||||||
|
|
||||||
|
for( int i = 1; i < argc; i++ ) |
||||||
|
{ |
||||||
|
cout << "Processing " << i << " " << argv[i] << endl; |
||||||
|
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 ) |
||||||
|
{ |
||||||
|
cascadeName.assign( argv[i] + cascadeOptLen ); |
||||||
|
cout << " from which we have cascadeName= " << cascadeName << endl; |
||||||
|
} |
||||||
|
else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 ) |
||||||
|
{ |
||||||
|
if( argv[i][nestedCascadeOpt.length()] == '=' ) |
||||||
|
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 ); |
||||||
|
} |
||||||
|
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 ) |
||||||
|
{ |
||||||
|
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 ) |
||||||
|
scale = 1; |
||||||
|
cout << " from which we read scale = " << scale << endl; |
||||||
|
} |
||||||
|
else if( tryFlipOpt.compare( 0, tryFlipOptLen, argv[i], tryFlipOptLen ) == 0 ) |
||||||
|
{ |
||||||
|
tryflip = true; |
||||||
|
cout << " will try to flip image horizontally to detect assymetric objects\n"; |
||||||
|
} |
||||||
|
else if( argv[i][0] == '-' ) |
||||||
|
{ |
||||||
|
cerr << "WARNING: Unknown option " << argv[i] << endl; |
||||||
|
} |
||||||
|
else |
||||||
|
inputName.assign( argv[i] ); |
||||||
|
} |
||||||
|
|
||||||
|
if( !cascade.load( cascadeName ) ) |
||||||
|
{ |
||||||
|
cerr << "ERROR: Could not load face cascade" << endl; |
||||||
|
help(); |
||||||
|
return -1; |
||||||
|
} |
||||||
|
if( !nestedCascade.load( nestedCascadeName ) ) |
||||||
|
{ |
||||||
|
cerr << "ERROR: Could not load smile cascade" << endl; |
||||||
|
help(); |
||||||
|
return -1; |
||||||
|
} |
||||||
|
|
||||||
|
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') ) |
||||||
|
{ |
||||||
|
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' ); |
||||||
|
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ; |
||||||
|
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl; |
||||||
|
} |
||||||
|
else if( inputName.size() ) |
||||||
|
{ |
||||||
|
capture = cvCaptureFromAVI( inputName.c_str() ); |
||||||
|
if(!capture) cout << "Capture from AVI didn't work" << endl; |
||||||
|
} |
||||||
|
|
||||||
|
cvNamedWindow( "result", 1 ); |
||||||
|
|
||||||
|
if( capture ) |
||||||
|
{ |
||||||
|
cout << "In capture ..." << endl; |
||||||
|
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl; |
||||||
|
|
||||||
|
for(;;) |
||||||
|
{ |
||||||
|
IplImage* iplImg = cvQueryFrame( capture ); |
||||||
|
frame = iplImg; |
||||||
|
if( frame.empty() ) |
||||||
|
break; |
||||||
|
if( iplImg->origin == IPL_ORIGIN_TL ) |
||||||
|
frame.copyTo( frameCopy ); |
||||||
|
else |
||||||
|
flip( frame, frameCopy, 0 ); |
||||||
|
|
||||||
|
detectAndDraw( frameCopy, cascade, nestedCascade, scale, tryflip ); |
||||||
|
|
||||||
|
if( waitKey( 10 ) >= 0 ) |
||||||
|
goto _cleanup_; |
||||||
|
} |
||||||
|
|
||||||
|
waitKey(0); |
||||||
|
|
||||||
|
_cleanup_: |
||||||
|
cvReleaseCapture( &capture ); |
||||||
|
} |
||||||
|
else |
||||||
|
{ |
||||||
|
cerr << "ERROR: Could not initiate capture" << endl; |
||||||
|
help(); |
||||||
|
return -1; |
||||||
|
} |
||||||
|
|
||||||
|
cvDestroyWindow("result"); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
||||||
|
CascadeClassifier& nestedCascade, |
||||||
|
double scale, bool tryflip) |
||||||
|
{ |
||||||
|
int i = 0; |
||||||
|
vector<Rect> faces, faces2; |
||||||
|
const static Scalar colors[] = { CV_RGB(0,0,255), |
||||||
|
CV_RGB(0,128,255), |
||||||
|
CV_RGB(0,255,255), |
||||||
|
CV_RGB(0,255,0), |
||||||
|
CV_RGB(255,128,0), |
||||||
|
CV_RGB(255,255,0), |
||||||
|
CV_RGB(255,0,0), |
||||||
|
CV_RGB(255,0,255)} ; |
||||||
|
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); |
||||||
|
|
||||||
|
cvtColor( img, gray, CV_BGR2GRAY ); |
||||||
|
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); |
||||||
|
equalizeHist( smallImg, smallImg ); |
||||||
|
|
||||||
|
cascade.detectMultiScale( smallImg, faces, |
||||||
|
1.1, 2, 0 |
||||||
|
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||||
|
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||||
|
|CV_HAAR_SCALE_IMAGE |
||||||
|
, |
||||||
|
Size(30, 30) ); |
||||||
|
if( tryflip ) |
||||||
|
{ |
||||||
|
flip(smallImg, smallImg, 1); |
||||||
|
cascade.detectMultiScale( smallImg, faces2, |
||||||
|
1.1, 2, 0 |
||||||
|
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||||
|
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||||
|
|CV_HAAR_SCALE_IMAGE |
||||||
|
, |
||||||
|
Size(30, 30) ); |
||||||
|
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ ) |
||||||
|
{ |
||||||
|
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height)); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
for( vector<Rect>::iterator r = faces.begin(); r != faces.end(); r++, i++ ) |
||||||
|
{ |
||||||
|
Mat smallImgROI; |
||||||
|
vector<Rect> nestedObjects; |
||||||
|
Point center; |
||||||
|
Scalar color = colors[i%8]; |
||||||
|
int radius; |
||||||
|
|
||||||
|
double aspect_ratio = (double)r->width/r->height; |
||||||
|
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ) |
||||||
|
{ |
||||||
|
center.x = cvRound((r->x + r->width*0.5)*scale); |
||||||
|
center.y = cvRound((r->y + r->height*0.5)*scale); |
||||||
|
radius = cvRound((r->width + r->height)*0.25*scale); |
||||||
|
circle( img, center, radius, color, 3, 8, 0 ); |
||||||
|
} |
||||||
|
else |
||||||
|
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)), |
||||||
|
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)), |
||||||
|
color, 3, 8, 0); |
||||||
|
|
||||||
|
const int half_height=cvRound((float)r->height/2); |
||||||
|
r->y=r->y + half_height; |
||||||
|
r->height = half_height; |
||||||
|
smallImgROI = smallImg(*r); |
||||||
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects, |
||||||
|
1.1, 0, 0 |
||||||
|
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||||
|
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||||
|
//|CV_HAAR_DO_CANNY_PRUNING
|
||||||
|
|CV_HAAR_SCALE_IMAGE |
||||||
|
, |
||||||
|
Size(30, 30) ); |
||||||
|
|
||||||
|
// The number of detected neighbors depends on image size (and also illumination, etc.). The
|
||||||
|
// following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be
|
||||||
|
//accurate only after a first smile has been displayed by the user.
|
||||||
|
const int smile_neighbors = (int)nestedObjects.size(); |
||||||
|
static int max_neighbors=-1; |
||||||
|
static int min_neighbors=-1; |
||||||
|
if (min_neighbors == -1) min_neighbors = smile_neighbors; |
||||||
|
max_neighbors = MAX(max_neighbors, smile_neighbors); |
||||||
|
|
||||||
|
// Draw rectangle on the left side of the image reflecting smile intensity
|
||||||
|
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1); |
||||||
|
int rect_height = cvRound((float)img.rows * intensityZeroOne); |
||||||
|
CvScalar col = CV_RGB((float)255 * intensityZeroOne, 0, 0); |
||||||
|
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1); |
||||||
|
} |
||||||
|
|
||||||
|
cv::imshow( "result", img ); |
||||||
|
} |