Before Width: | Height: | Size: 49 KiB After Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 28 KiB After Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 51 KiB |
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 70 KiB After Width: | Height: | Size: 74 KiB |
@ -0,0 +1,247 @@ |
||||
#include "opencv2/objdetect/objdetect.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
|
||||
#include <cctype> |
||||
#include <iostream> |
||||
#include <iterator> |
||||
#include <stdio.h> |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
static void help() |
||||
{ |
||||
cout << "\nThis program demonstrates the smile detector.\n" |
||||
"Usage:\n" |
||||
"./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n" |
||||
" [--smile-cascade=[<smile_cascade_path>]]\n" |
||||
" [--scale=<image scale greater or equal to 1, try 2.0 for example. The larger the faster the processing>]\n" |
||||
" [--try-flip]\n" |
||||
" [video_filename|camera_index]\n\n" |
||||
"Example:\n" |
||||
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n" |
||||
"During execution:\n\tHit any key to quit.\n" |
||||
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl; |
||||
} |
||||
|
||||
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
||||
CascadeClassifier& nestedCascade, |
||||
double scale, bool tryflip ); |
||||
|
||||
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml"; |
||||
string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml"; |
||||
|
||||
|
||||
int main( int argc, const char** argv ) |
||||
{ |
||||
CvCapture* capture = 0; |
||||
Mat frame, frameCopy, image; |
||||
const string scaleOpt = "--scale="; |
||||
size_t scaleOptLen = scaleOpt.length(); |
||||
const string cascadeOpt = "--cascade="; |
||||
size_t cascadeOptLen = cascadeOpt.length(); |
||||
const string nestedCascadeOpt = "--smile-cascade"; |
||||
size_t nestedCascadeOptLen = nestedCascadeOpt.length(); |
||||
const string tryFlipOpt = "--try-flip"; |
||||
size_t tryFlipOptLen = tryFlipOpt.length(); |
||||
string inputName; |
||||
bool tryflip = false; |
||||
|
||||
help(); |
||||
|
||||
CascadeClassifier cascade, nestedCascade; |
||||
double scale = 1; |
||||
|
||||
for( int i = 1; i < argc; i++ ) |
||||
{ |
||||
cout << "Processing " << i << " " << argv[i] << endl; |
||||
if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 ) |
||||
{ |
||||
cascadeName.assign( argv[i] + cascadeOptLen ); |
||||
cout << " from which we have cascadeName= " << cascadeName << endl; |
||||
} |
||||
else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 ) |
||||
{ |
||||
if( argv[i][nestedCascadeOpt.length()] == '=' ) |
||||
nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 ); |
||||
} |
||||
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 ) |
||||
{ |
||||
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 ) |
||||
scale = 1; |
||||
cout << " from which we read scale = " << scale << endl; |
||||
} |
||||
else if( tryFlipOpt.compare( 0, tryFlipOptLen, argv[i], tryFlipOptLen ) == 0 ) |
||||
{ |
||||
tryflip = true; |
||||
cout << " will try to flip image horizontally to detect assymetric objects\n"; |
||||
} |
||||
else if( argv[i][0] == '-' ) |
||||
{ |
||||
cerr << "WARNING: Unknown option " << argv[i] << endl; |
||||
} |
||||
else |
||||
inputName.assign( argv[i] ); |
||||
} |
||||
|
||||
if( !cascade.load( cascadeName ) ) |
||||
{ |
||||
cerr << "ERROR: Could not load face cascade" << endl; |
||||
help(); |
||||
return -1; |
||||
} |
||||
if( !nestedCascade.load( nestedCascadeName ) ) |
||||
{ |
||||
cerr << "ERROR: Could not load smile cascade" << endl; |
||||
help(); |
||||
return -1; |
||||
} |
||||
|
||||
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') ) |
||||
{ |
||||
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' ); |
||||
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ; |
||||
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl; |
||||
} |
||||
else if( inputName.size() ) |
||||
{ |
||||
capture = cvCaptureFromAVI( inputName.c_str() ); |
||||
if(!capture) cout << "Capture from AVI didn't work" << endl; |
||||
} |
||||
|
||||
cvNamedWindow( "result", 1 ); |
||||
|
||||
if( capture ) |
||||
{ |
||||
cout << "In capture ..." << endl; |
||||
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl; |
||||
|
||||
for(;;) |
||||
{ |
||||
IplImage* iplImg = cvQueryFrame( capture ); |
||||
frame = iplImg; |
||||
if( frame.empty() ) |
||||
break; |
||||
if( iplImg->origin == IPL_ORIGIN_TL ) |
||||
frame.copyTo( frameCopy ); |
||||
else |
||||
flip( frame, frameCopy, 0 ); |
||||
|
||||
detectAndDraw( frameCopy, cascade, nestedCascade, scale, tryflip ); |
||||
|
||||
if( waitKey( 10 ) >= 0 ) |
||||
goto _cleanup_; |
||||
} |
||||
|
||||
waitKey(0); |
||||
|
||||
_cleanup_: |
||||
cvReleaseCapture( &capture ); |
||||
} |
||||
else |
||||
{ |
||||
cerr << "ERROR: Could not initiate capture" << endl; |
||||
help(); |
||||
return -1; |
||||
} |
||||
|
||||
cvDestroyWindow("result"); |
||||
return 0; |
||||
} |
||||
|
||||
void detectAndDraw( Mat& img, CascadeClassifier& cascade, |
||||
CascadeClassifier& nestedCascade, |
||||
double scale, bool tryflip) |
||||
{ |
||||
int i = 0; |
||||
vector<Rect> faces, faces2; |
||||
const static Scalar colors[] = { CV_RGB(0,0,255), |
||||
CV_RGB(0,128,255), |
||||
CV_RGB(0,255,255), |
||||
CV_RGB(0,255,0), |
||||
CV_RGB(255,128,0), |
||||
CV_RGB(255,255,0), |
||||
CV_RGB(255,0,0), |
||||
CV_RGB(255,0,255)} ; |
||||
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 ); |
||||
|
||||
cvtColor( img, gray, CV_BGR2GRAY ); |
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR ); |
||||
equalizeHist( smallImg, smallImg ); |
||||
|
||||
cascade.detectMultiScale( smallImg, faces, |
||||
1.1, 2, 0 |
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
|CV_HAAR_SCALE_IMAGE |
||||
, |
||||
Size(30, 30) ); |
||||
if( tryflip ) |
||||
{ |
||||
flip(smallImg, smallImg, 1); |
||||
cascade.detectMultiScale( smallImg, faces2, |
||||
1.1, 2, 0 |
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
|CV_HAAR_SCALE_IMAGE |
||||
, |
||||
Size(30, 30) ); |
||||
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ ) |
||||
{ |
||||
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height)); |
||||
} |
||||
} |
||||
|
||||
for( vector<Rect>::iterator r = faces.begin(); r != faces.end(); r++, i++ ) |
||||
{ |
||||
Mat smallImgROI; |
||||
vector<Rect> nestedObjects; |
||||
Point center; |
||||
Scalar color = colors[i%8]; |
||||
int radius; |
||||
|
||||
double aspect_ratio = (double)r->width/r->height; |
||||
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ) |
||||
{ |
||||
center.x = cvRound((r->x + r->width*0.5)*scale); |
||||
center.y = cvRound((r->y + r->height*0.5)*scale); |
||||
radius = cvRound((r->width + r->height)*0.25*scale); |
||||
circle( img, center, radius, color, 3, 8, 0 ); |
||||
} |
||||
else |
||||
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)), |
||||
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)), |
||||
color, 3, 8, 0); |
||||
|
||||
const int half_height=cvRound((float)r->height/2); |
||||
r->y=r->y + half_height; |
||||
r->height = half_height; |
||||
smallImgROI = smallImg(*r); |
||||
nestedCascade.detectMultiScale( smallImgROI, nestedObjects, |
||||
1.1, 0, 0 |
||||
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
||||
//|CV_HAAR_DO_ROUGH_SEARCH
|
||||
//|CV_HAAR_DO_CANNY_PRUNING
|
||||
|CV_HAAR_SCALE_IMAGE |
||||
, |
||||
Size(30, 30) ); |
||||
|
||||
// The number of detected neighbors depends on image size (and also illumination, etc.). The
|
||||
// following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be
|
||||
//accurate only after a first smile has been displayed by the user.
|
||||
const int smile_neighbors = (int)nestedObjects.size(); |
||||
static int max_neighbors=-1; |
||||
static int min_neighbors=-1; |
||||
if (min_neighbors == -1) min_neighbors = smile_neighbors; |
||||
max_neighbors = MAX(max_neighbors, smile_neighbors); |
||||
|
||||
// Draw rectangle on the left side of the image reflecting smile intensity
|
||||
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1); |
||||
int rect_height = cvRound((float)img.rows * intensityZeroOne); |
||||
CvScalar col = CV_RGB((float)255 * intensityZeroOne, 0, 0); |
||||
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1); |
||||
} |
||||
|
||||
cv::imshow( "result", img ); |
||||
} |