added version of StereoBeliefPropagation::operator() for user specified data term

pull/13383/head
Vladislav Vinogradov 14 years ago
parent a3f3de3391
commit 9ddb373614
  1. 5
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 248
      modules/gpu/src/beliefpropagation_gpu.cpp
  3. 6
      modules/gpu/src/constantspacebp_gpu.cpp
  4. 1
      modules/gpu/src/precomp.hpp

@ -415,6 +415,11 @@ namespace cv
//! Acync version
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream);
//! version for user specified data term
void operator()(const GpuMat& data, GpuMat& disparity);
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream);
int ndisp;
int iters;

@ -54,6 +54,9 @@ cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float,
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace bp
@ -90,131 +93,202 @@ cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_
{
}
static void stereo_bp_gpu_operator(int& ndisp, int& iters, int& levels,
float& max_data_term, float& data_weight, float& max_disc_term, float& disc_single_jump,
int& msg_type,
GpuMat& u, GpuMat& d, GpuMat& l, GpuMat& r,
GpuMat& u2, GpuMat& d2, GpuMat& l2, GpuMat& r2,
vector<GpuMat>& datas, GpuMat& out,
const GpuMat& left, const GpuMat& right, GpuMat& disp,
const cudaStream_t& stream)
namespace
{
CV_DbgAssert(0 < ndisp && 0 < iters && 0 < levels
&& (msg_type == CV_32F || msg_type == CV_16S)
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
CV_Assert((left.type() == CV_8UC1 || left.type() == CV_8UC3));
class StereoBeliefPropagationImpl
{
public:
StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_,
GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_,
GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_,
vector<GpuMat>& datas_, GpuMat& out_)
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_),
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f)
{
CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels);
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S);
const Scalar zero = Scalar::all(0);
if (rthis.msg_type == CV_16S)
CV_Assert((1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits<short>::max());
}
const float scale = ((msg_type == CV_32F) ? 1.0f : 10.0f);
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const cudaStream_t& stream)
{
CV_DbgAssert(left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3);
int rows = left.rows;
int cols = left.cols;
rows = left.rows;
cols = left.cols;
int divisor = (int)pow(2.f, levels - 1.0f);
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
int divisor = (int)pow(2.f, rthis.levels - 1.0f);
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
u.create(rows * ndisp, cols, msg_type);
d.create(rows * ndisp, cols, msg_type);
l.create(rows * ndisp, cols, msg_type);
r.create(rows * ndisp, cols, msg_type);
init();
if (levels & 1)
{
//can clear less area
u = zero;
d = zero;
l = zero;
r = zero;
}
if (levels > 1)
{
int less_rows = (rows + 1) / 2;
int less_cols = (cols + 1) / 2;
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type);
u2.create(less_rows * ndisp, less_cols, msg_type);
d2.create(less_rows * ndisp, less_cols, msg_type);
l2.create(less_rows * ndisp, less_cols, msg_type);
r2.create(less_rows * ndisp, less_cols, msg_type);
bp::comp_data(rthis.msg_type, left, right, left.channels(), datas[0], stream);
if ((levels & 1) == 0)
calcBP(disp, stream);
}
void operator()(const GpuMat& data, GpuMat& disp, const cudaStream_t& stream)
{
u2 = zero;
d2 = zero;
l2 = zero;
r2 = zero;
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0));
rows = data.rows / rthis.ndisp;
cols = data.cols;
int divisor = (int)pow(2.f, rthis.levels - 1.0f);
int lowest_cols = cols / divisor;
int lowest_rows = rows / divisor;
const int min_image_dim_size = 2;
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
init();
datas[0] = data;
calcBP(disp, stream);
}
private:
void init()
{
u.create(rows * rthis.ndisp, cols, rthis.msg_type);
d.create(rows * rthis.ndisp, cols, rthis.msg_type);
l.create(rows * rthis.ndisp, cols, rthis.msg_type);
r.create(rows * rthis.ndisp, cols, rthis.msg_type);
if (rthis.levels & 1)
{
//can clear less area
u = zero;
d = zero;
l = zero;
r = zero;
}
if (rthis.levels > 1)
{
int less_rows = (rows + 1) / 2;
int less_cols = (cols + 1) / 2;
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
if ((rthis.levels & 1) == 0)
{
u2 = zero;
d2 = zero;
l2 = zero;
r2 = zero;
}
}
bp::load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump);
datas.resize(rthis.levels);
cols_all.resize(rthis.levels);
rows_all.resize(rthis.levels);
cols_all[0] = cols;
rows_all[0] = rows;
}
}
bp::load_constants(ndisp, max_data_term, scale * data_weight, scale * max_disc_term, scale * disc_single_jump);
void calcBP(GpuMat& disp, const cudaStream_t& stream)
{
for (int i = 1; i < rthis.levels; ++i)
{
cols_all[i] = (cols_all[i-1] + 1) / 2;
rows_all[i] = (rows_all[i-1] + 1) / 2;
datas.resize(levels);
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type);
AutoBuffer<int> buf(levels << 1);
bp::data_step_down(cols_all[i], rows_all[i], rows_all[i-1], rthis.msg_type, datas[i-1], datas[i], stream);
}
int* cols_all = buf;
int* rows_all = cols_all + levels;
DevMem2D mus[] = {u, u2};
DevMem2D mds[] = {d, d2};
DevMem2D mrs[] = {r, r2};
DevMem2D mls[] = {l, l2};
cols_all[0] = cols;
rows_all[0] = rows;
int mem_idx = (rthis.levels & 1) ? 0 : 1;
datas[0].create(rows * ndisp, cols, msg_type);
for (int i = rthis.levels - 1; i >= 0; --i)
{
// for lower level we have already computed messages by setting to zero
if (i != rthis.levels - 1)
bp::level_up_messages(mem_idx, cols_all[i], rows_all[i], rows_all[i+1], rthis.msg_type, mus, mds, mls, mrs, stream);
bp::comp_data(msg_type, left, right, left.channels(), datas.front(), stream);
bp::calc_all_iterations(cols_all[i], rows_all[i], rthis.iters, rthis.msg_type, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], stream);
for (int i = 1; i < levels; i++)
{
cols_all[i] = (cols_all[i-1] + 1) / 2;
rows_all[i] = (rows_all[i-1] + 1) / 2;
mem_idx = (mem_idx + 1) & 1;
}
datas[i].create(rows_all[i] * ndisp, cols_all[i], msg_type);
if (disp.empty())
disp.create(rows, cols, CV_16S);
bp::data_step_down(cols_all[i], rows_all[i], rows_all[i-1], msg_type, datas[i-1], datas[i], stream);
}
out = ((disp.type() == CV_16S) ? disp : GpuMat(rows, cols, CV_16S));
out = zero;
DevMem2D mus[] = {u, u2};
DevMem2D mds[] = {d, d2};
DevMem2D mrs[] = {r, r2};
DevMem2D mls[] = {l, l2};
bp::output(rthis.msg_type, u, d, l, r, datas.front(), disp, stream);
int mem_idx = (levels & 1) ? 0 : 1;
if (disp.type() != CV_16S)
out.convertTo(disp, disp.type());
}
for (int i = levels - 1; i >= 0; i--)
{
// for lower level we have already computed messages by setting to zero
if (i != levels - 1)
bp::level_up_messages(mem_idx, cols_all[i], rows_all[i], rows_all[i+1], msg_type, mus, mds, mls, mrs, stream);
StereoBeliefPropagation& rthis;
bp::calc_all_iterations(cols_all[i], rows_all[i], iters, msg_type, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], stream);
GpuMat& u;
GpuMat& d;
GpuMat& l;
GpuMat& r;
mem_idx = (mem_idx + 1) & 1;
}
GpuMat& u2;
GpuMat& d2;
GpuMat& l2;
GpuMat& r2;
if (disp.empty())
disp.create(rows, cols, CV_16S);
vector<GpuMat>& datas;
GpuMat& out;
out = ((disp.type() == CV_16S) ? disp : GpuMat(rows, cols, CV_16S));
out = zero;
const Scalar zero;
const float scale;
bp::output(msg_type, u, d, l, r, datas.front(), disp, stream);
int rows, cols;
if (disp.type() != CV_16S)
out.convertTo(disp, disp.type());
vector<int> cols_all, rows_all;
};
}
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp)
{
::stereo_bp_gpu_operator(ndisp, iters, levels, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, 0);
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
impl(left, right, disp, 0);
}
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
::stereo_bp_gpu_operator(ndisp, iters, levels, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, u, d, l, r, u2, d2, l2, r2, datas, out, left, right, disp, StreamAccessor::getStream(stream));
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
impl(left, right, disp, StreamAccessor::getStream(stream));
}
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp)
{
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
impl(data, disp, 0);
}
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
{
::StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
impl(data, disp, StreamAccessor::getStream(stream));
}
#endif /* !defined (HAVE_CUDA) */

@ -129,9 +129,9 @@ cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, in
template<class T>
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp,
cudaStream_t stream)
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp,
cudaStream_t stream)
{
CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());

@ -52,6 +52,7 @@
#include <iostream>
#include <limits>
#include <vector>
#include "opencv2/gpu/gpu.hpp"

Loading…
Cancel
Save