|
|
|
@ -49,10 +49,11 @@ |
|
|
|
|
namespace cv { |
|
|
|
|
namespace ml { |
|
|
|
|
|
|
|
|
|
KNearest::Params::Params(int k, bool isclassifier_) |
|
|
|
|
KNearest::Params::Params(int k, bool isclassifier_, int Emax_) |
|
|
|
|
{ |
|
|
|
|
defaultK = k; |
|
|
|
|
isclassifier = isclassifier_; |
|
|
|
|
Emax = Emax_; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -352,8 +353,156 @@ public: |
|
|
|
|
Params params; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
Ptr<KNearest> KNearest::create(const Params& p) |
|
|
|
|
|
|
|
|
|
class KNearestKDTreeImpl : public KNearest |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
KNearestKDTreeImpl(const Params& p) |
|
|
|
|
{ |
|
|
|
|
params = p; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
virtual ~KNearestKDTreeImpl() {} |
|
|
|
|
|
|
|
|
|
Params getParams() const { return params; } |
|
|
|
|
void setParams(const Params& p) { params = p; } |
|
|
|
|
|
|
|
|
|
bool isClassifier() const { return params.isclassifier; } |
|
|
|
|
bool isTrained() const { return !samples.empty(); } |
|
|
|
|
|
|
|
|
|
String getDefaultModelName() const { return "opencv_ml_knn_kd"; } |
|
|
|
|
|
|
|
|
|
void clear() |
|
|
|
|
{ |
|
|
|
|
samples.release(); |
|
|
|
|
responses.release(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
int getVarCount() const { return samples.cols; } |
|
|
|
|
|
|
|
|
|
bool train( const Ptr<TrainData>& data, int flags ) |
|
|
|
|
{ |
|
|
|
|
Mat new_samples = data->getTrainSamples(ROW_SAMPLE); |
|
|
|
|
Mat new_responses; |
|
|
|
|
data->getTrainResponses().convertTo(new_responses, CV_32F); |
|
|
|
|
bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty(); |
|
|
|
|
|
|
|
|
|
CV_Assert( new_samples.type() == CV_32F ); |
|
|
|
|
|
|
|
|
|
if( !update ) |
|
|
|
|
{ |
|
|
|
|
clear(); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
CV_Assert( new_samples.cols == samples.cols && |
|
|
|
|
new_responses.cols == responses.cols ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
samples.push_back(new_samples); |
|
|
|
|
responses.push_back(new_responses); |
|
|
|
|
|
|
|
|
|
tr.build(samples); |
|
|
|
|
|
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float findNearest( InputArray _samples, int k, |
|
|
|
|
OutputArray _results, |
|
|
|
|
OutputArray _neighborResponses, |
|
|
|
|
OutputArray _dists ) const |
|
|
|
|
{ |
|
|
|
|
float result = 0.f; |
|
|
|
|
CV_Assert( 0 < k ); |
|
|
|
|
|
|
|
|
|
Mat test_samples = _samples.getMat(); |
|
|
|
|
CV_Assert( test_samples.type() == CV_32F && test_samples.cols == samples.cols ); |
|
|
|
|
int testcount = test_samples.rows; |
|
|
|
|
|
|
|
|
|
if( testcount == 0 ) |
|
|
|
|
{ |
|
|
|
|
_results.release(); |
|
|
|
|
_neighborResponses.release(); |
|
|
|
|
_dists.release(); |
|
|
|
|
return 0.f; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Mat res, nr, d; |
|
|
|
|
if( _results.needed() ) |
|
|
|
|
{ |
|
|
|
|
_results.create(testcount, 1, CV_32F); |
|
|
|
|
res = _results.getMat(); |
|
|
|
|
} |
|
|
|
|
if( _neighborResponses.needed() ) |
|
|
|
|
{ |
|
|
|
|
_neighborResponses.create(testcount, k, CV_32F); |
|
|
|
|
nr = _neighborResponses.getMat(); |
|
|
|
|
} |
|
|
|
|
if( _dists.needed() ) |
|
|
|
|
{ |
|
|
|
|
_dists.create(testcount, k, CV_32F); |
|
|
|
|
d = _dists.getMat(); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for (int i=0; i<test_samples.rows; ++i) |
|
|
|
|
{ |
|
|
|
|
Mat _res, _nr, _d; |
|
|
|
|
if (res.rows>i) |
|
|
|
|
{ |
|
|
|
|
_res = res.row(i); |
|
|
|
|
} |
|
|
|
|
if (nr.rows>i) |
|
|
|
|
{ |
|
|
|
|
_nr = nr.row(i); |
|
|
|
|
} |
|
|
|
|
if (d.rows>i) |
|
|
|
|
{ |
|
|
|
|
_d = d.row(i); |
|
|
|
|
} |
|
|
|
|
tr.findNearest(test_samples.row(i), k, params.Emax, _res, _nr, _d, noArray()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return result; // currently always 0
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
float predict(InputArray inputs, OutputArray outputs, int) const |
|
|
|
|
{ |
|
|
|
|
return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void write( FileStorage& fs ) const |
|
|
|
|
{ |
|
|
|
|
fs << "is_classifier" << (int)params.isclassifier; |
|
|
|
|
fs << "default_k" << params.defaultK; |
|
|
|
|
|
|
|
|
|
fs << "samples" << samples; |
|
|
|
|
fs << "responses" << responses; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void read( const FileNode& fn ) |
|
|
|
|
{ |
|
|
|
|
clear(); |
|
|
|
|
params.isclassifier = (int)fn["is_classifier"] != 0; |
|
|
|
|
params.defaultK = (int)fn["default_k"]; |
|
|
|
|
|
|
|
|
|
fn["samples"] >> samples; |
|
|
|
|
fn["responses"] >> responses; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
KDTree tr; |
|
|
|
|
|
|
|
|
|
Mat samples; |
|
|
|
|
Mat responses; |
|
|
|
|
Params params; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
Ptr<KNearest> KNearest::create(const Params& p, int type) |
|
|
|
|
{ |
|
|
|
|
if (KDTREE==type) |
|
|
|
|
{ |
|
|
|
|
return makePtr<KNearestKDTreeImpl>(p); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
return makePtr<KNearestImpl>(p); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|