Refactored videostab module. Added normalization into motion estimators.

pull/2/head
Alexey Spizhevoy 13 years ago
parent 258afe7cc2
commit 9d871abd32
  1. 23
      modules/videostab/include/opencv2/videostab/global_motion.hpp
  2. 123
      modules/videostab/src/global_motion.cpp
  3. 17
      modules/videostab/src/stabilizer.cpp
  4. 2
      modules/videostab/src/wobble_suppression.cpp
  5. 18
      samples/cpp/videostab.cpp

@ -66,8 +66,7 @@ enum MotionModel
}; };
CV_EXPORTS Mat estimateGlobalMotionLeastSquares( CV_EXPORTS Mat estimateGlobalMotionLeastSquares(
const std::vector<Point2f> &points0, const std::vector<Point2f> &points1, int npoints, Point2f *points0, Point2f *points1, int model = AFFINE, float *rmse = 0);
int model = AFFINE, float *rmse = 0);
struct CV_EXPORTS RansacParams struct CV_EXPORTS RansacParams
{ {
@ -80,16 +79,24 @@ struct CV_EXPORTS RansacParams
RansacParams(int size, float thresh, float eps, float prob) RansacParams(int size, float thresh, float eps, float prob)
: size(size), thresh(thresh), eps(eps), prob(prob) {} : size(size), thresh(thresh), eps(eps), prob(prob) {}
static RansacParams translation2dMotionStd() { return RansacParams(1, 0.5f, 0.5f, 0.99f); } static RansacParams default2dMotion(MotionModel model)
static RansacParams translationAndScale2dMotionStd() { return RansacParams(2, 0.5f, 0.5f, 0.99f); } {
static RansacParams linearSimilarity2dMotionStd() { return RansacParams(2, 0.5f, 0.5f, 0.99f); } CV_Assert(model < UNKNOWN);
static RansacParams affine2dMotionStd() { return RansacParams(3, 0.5f, 0.5f, 0.99f); } if (model == TRANSLATION)
static RansacParams homography2dMotionStd() { return RansacParams(4, 0.5f, 0.5f, 0.99f); } return RansacParams(1, 0.5f, 0.5f, 0.99f);
if (model == TRANSLATION_AND_SCALE)
return RansacParams(2, 0.5f, 0.5f, 0.99f);
if (model == LINEAR_SIMILARITY)
return RansacParams(2, 0.5f, 0.5f, 0.99f);
if (model == AFFINE)
return RansacParams(3, 0.5f, 0.5f, 0.99f);
return RansacParams(4, 0.5f, 0.5f, 0.99f);
}
}; };
CV_EXPORTS Mat estimateGlobalMotionRobust( CV_EXPORTS Mat estimateGlobalMotionRobust(
const std::vector<Point2f> &points0, const std::vector<Point2f> &points1, const std::vector<Point2f> &points0, const std::vector<Point2f> &points1,
int model = AFFINE, const RansacParams &params = RansacParams::affine2dMotionStd(), int model = AFFINE, const RansacParams &params = RansacParams::default2dMotion(AFFINE),
float *rmse = 0, int *ninliers = 0); float *rmse = 0, int *ninliers = 0);
class CV_EXPORTS GlobalMotionEstimatorBase class CV_EXPORTS GlobalMotionEstimatorBase

@ -51,8 +51,44 @@ namespace cv
namespace videostab namespace videostab
{ {
// does isotropic normalization
static Mat normalizePoints(int npoints, Point2f *points)
{
float cx = 0.f, cy = 0.f;
for (int i = 0; i < npoints; ++i)
{
cx += points[i].x;
cy += points[i].y;
}
cx /= npoints;
cy /= npoints;
float d = 0.f;
for (int i = 0; i < npoints; ++i)
{
points[i].x -= cx;
points[i].y -= cy;
d += sqrt(sqr(points[i].x) + sqr(points[i].y));
}
d /= npoints;
float s = sqrt(2.f) / d;
for (int i = 0; i < npoints; ++i)
{
points[i].x *= s;
points[i].y *= s;
}
Mat_<float> T = Mat::eye(3, 3, CV_32F);
T(0,0) = T(1,1) = s;
T(0,2) = -cx*s;
T(1,2) = -cy*s;
return T;
}
static Mat estimateGlobMotionLeastSquaresTranslation( static Mat estimateGlobMotionLeastSquaresTranslation(
int npoints, const Point2f *points0, const Point2f *points1, float *rmse) int npoints, Point2f *points0, Point2f *points1, float *rmse)
{ {
Mat_<float> M = Mat::eye(3, 3, CV_32F); Mat_<float> M = Mat::eye(3, 3, CV_32F);
for (int i = 0; i < npoints; ++i) for (int i = 0; i < npoints; ++i)
@ -62,6 +98,7 @@ static Mat estimateGlobMotionLeastSquaresTranslation(
} }
M(0,2) /= npoints; M(0,2) /= npoints;
M(1,2) /= npoints; M(1,2) /= npoints;
if (rmse) if (rmse)
{ {
*rmse = 0; *rmse = 0;
@ -70,13 +107,17 @@ static Mat estimateGlobMotionLeastSquaresTranslation(
sqr(points1[i].y - points0[i].y - M(1,2)); sqr(points1[i].y - points0[i].y - M(1,2));
*rmse = sqrt(*rmse / npoints); *rmse = sqrt(*rmse / npoints);
} }
return M; return M;
} }
static Mat estimateGlobMotionLeastSquaresTranslationAndScale( static Mat estimateGlobMotionLeastSquaresTranslationAndScale(
int npoints, const Point2f *points0, const Point2f *points1, float *rmse) int npoints, Point2f *points0, Point2f *points1, float *rmse)
{ {
Mat_<float> T0 = normalizePoints(npoints, points0);
Mat_<float> T1 = normalizePoints(npoints, points1);
Mat_<float> A(2*npoints, 3), b(2*npoints, 1); Mat_<float> A(2*npoints, 3), b(2*npoints, 1);
float *a0, *a1; float *a0, *a1;
Point2f p0, p1; Point2f p0, p1;
@ -103,13 +144,17 @@ static Mat estimateGlobMotionLeastSquaresTranslationAndScale(
M(0,0) = M(1,1) = sol(0,0); M(0,0) = M(1,1) = sol(0,0);
M(0,2) = sol(1,0); M(0,2) = sol(1,0);
M(1,2) = sol(2,0); M(1,2) = sol(2,0);
return M;
return T1.inv() * M * T0;
} }
static Mat estimateGlobMotionLeastSquaresLinearSimilarity( static Mat estimateGlobMotionLeastSquaresLinearSimilarity(
int npoints, const Point2f *points0, const Point2f *points1, float *rmse) int npoints, Point2f *points0, Point2f *points1, float *rmse)
{ {
Mat_<float> T0 = normalizePoints(npoints, points0);
Mat_<float> T1 = normalizePoints(npoints, points1);
Mat_<float> A(2*npoints, 4), b(2*npoints, 1); Mat_<float> A(2*npoints, 4), b(2*npoints, 1);
float *a0, *a1; float *a0, *a1;
Point2f p0, p1; Point2f p0, p1;
@ -138,13 +183,17 @@ static Mat estimateGlobMotionLeastSquaresLinearSimilarity(
M(1,0) = -sol(1,0); M(1,0) = -sol(1,0);
M(0,2) = sol(2,0); M(0,2) = sol(2,0);
M(1,2) = sol(3,0); M(1,2) = sol(3,0);
return M;
return T1.inv() * M * T0;
} }
static Mat estimateGlobMotionLeastSquaresAffine( static Mat estimateGlobMotionLeastSquaresAffine(
int npoints, const Point2f *points0, const Point2f *points1, float *rmse) int npoints, Point2f *points0, Point2f *points1, float *rmse)
{ {
Mat_<float> T0 = normalizePoints(npoints, points0);
Mat_<float> T1 = normalizePoints(npoints, points1);
Mat_<float> A(2*npoints, 6), b(2*npoints, 1); Mat_<float> A(2*npoints, 6), b(2*npoints, 1);
float *a0, *a1; float *a0, *a1;
Point2f p0, p1; Point2f p0, p1;
@ -172,24 +221,22 @@ static Mat estimateGlobMotionLeastSquaresAffine(
for (int j = 0; j < 3; ++j, ++k) for (int j = 0; j < 3; ++j, ++k)
M(i,j) = sol(k,0); M(i,j) = sol(k,0);
return M; return T1.inv() * M * T0;
} }
Mat estimateGlobalMotionLeastSquares( Mat estimateGlobalMotionLeastSquares(
const vector<Point2f> &points0, const vector<Point2f> &points1, int model, float *rmse) int npoints, Point2f *points0, Point2f *points1, int model, float *rmse)
{ {
CV_Assert(model <= AFFINE); CV_Assert(model <= AFFINE);
CV_Assert(points0.size() == points1.size());
typedef Mat (*Impl)(int, const Point2f*, const Point2f*, float*); typedef Mat (*Impl)(int, Point2f*, Point2f*, float*);
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation, static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
estimateGlobMotionLeastSquaresTranslationAndScale, estimateGlobMotionLeastSquaresTranslationAndScale,
estimateGlobMotionLeastSquaresLinearSimilarity, estimateGlobMotionLeastSquaresLinearSimilarity,
estimateGlobMotionLeastSquaresAffine }; estimateGlobMotionLeastSquaresAffine };
int npoints = static_cast<int>(points0.size()); return impls[model](npoints, points0, points1, rmse);
return impls[model](npoints, &points0[0], &points1[0], rmse);
} }
@ -200,22 +247,22 @@ Mat estimateGlobalMotionRobust(
CV_Assert(model <= AFFINE); CV_Assert(model <= AFFINE);
CV_Assert(points0.size() == points1.size()); CV_Assert(points0.size() == points1.size());
typedef Mat (*Impl)(int, const Point2f*, const Point2f*, float*);
static Impl impls[] = { estimateGlobMotionLeastSquaresTranslation,
estimateGlobMotionLeastSquaresTranslationAndScale,
estimateGlobMotionLeastSquaresLinearSimilarity,
estimateGlobMotionLeastSquaresAffine };
const int npoints = static_cast<int>(points0.size()); const int npoints = static_cast<int>(points0.size());
const int niters = static_cast<int>(ceil(log(1 - params.prob) / const int niters = static_cast<int>(ceil(log(1 - params.prob) /
log(1 - pow(1 - params.eps, params.size)))); log(1 - pow(1 - params.eps, params.size))));
RNG rng(0); // current hypothesis
vector<int> indices(params.size); vector<int> indices(params.size);
vector<Point2f> subset0(params.size), subset1(params.size); vector<Point2f> subset0(params.size);
vector<Point2f> subset0best(params.size), subset1best(params.size); vector<Point2f> subset1(params.size);
// best hypothesis
vector<Point2f> subset0best(params.size);
vector<Point2f> subset1best(params.size);
Mat_<float> bestM; Mat_<float> bestM;
int ninliersMax = -1; int ninliersMax = -1;
RNG rng(0);
Point2f p0, p1; Point2f p0, p1;
float x, y; float x, y;
@ -239,7 +286,8 @@ Mat estimateGlobalMotionRobust(
subset1[i] = points1[indices[i]]; subset1[i] = points1[indices[i]];
} }
Mat_<float> M = impls[model](params.size, &subset0[0], &subset1[0], 0); Mat_<float> M = estimateGlobalMotionLeastSquares(
params.size, &subset0[0], &subset1[0], model, 0);
int ninliers = 0; int ninliers = 0;
for (int i = 0; i < npoints; ++i) for (int i = 0; i < npoints; ++i)
@ -260,8 +308,9 @@ Mat estimateGlobalMotionRobust(
} }
if (ninliersMax < params.size) if (ninliersMax < params.size)
// compute rmse // compute RMSE
bestM = impls[model](params.size, &subset0best[0], &subset1best[0], rmse); bestM = estimateGlobalMotionLeastSquares(
params.size, &subset0best[0], &subset1best[0], model, rmse);
else else
{ {
subset0.resize(ninliersMax); subset0.resize(ninliersMax);
@ -278,7 +327,8 @@ Mat estimateGlobalMotionRobust(
j++; j++;
} }
} }
bestM = impls[model](ninliersMax, &subset0[0], &subset1[0], rmse); bestM = estimateGlobalMotionLeastSquares(
ninliersMax, &subset0[0], &subset1[0], model, rmse);
} }
if (ninliers) if (ninliers)
@ -332,16 +382,11 @@ PyrLkRobustMotionEstimator::PyrLkRobustMotionEstimator(MotionModel model)
setDetector(new GoodFeaturesToTrackDetector()); setDetector(new GoodFeaturesToTrackDetector());
setOptFlowEstimator(new SparsePyrLkOptFlowEstimator()); setOptFlowEstimator(new SparsePyrLkOptFlowEstimator());
setMotionModel(model); setMotionModel(model);
if (model == TRANSLATION)
setRansacParams(RansacParams::translation2dMotionStd()); RansacParams ransac = RansacParams::default2dMotion(model);
else if (model == TRANSLATION_AND_SCALE) ransac.size *= 2; // we use more points than needed, but result looks better
setRansacParams(RansacParams::translationAndScale2dMotionStd()); setRansacParams(ransac);
else if (model == LINEAR_SIMILARITY)
setRansacParams(RansacParams::linearSimilarity2dMotionStd());
else if (model == AFFINE)
setRansacParams(RansacParams::affine2dMotionStd());
else if (model == HOMOGRAPHY)
setRansacParams(RansacParams::homography2dMotionStd());
setMaxRmse(0.5f); setMaxRmse(0.5f);
setMinInlierRatio(0.1f); setMinInlierRatio(0.1f);
setGridSize(Size(0,0)); setGridSize(Size(0,0));
@ -362,6 +407,7 @@ Mat PyrLkRobustMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, b
keypointsPrev_.push_back(KeyPoint((x+1)*dx, (y+1)*dy, 0.f)); keypointsPrev_.push_back(KeyPoint((x+1)*dx, (y+1)*dy, 0.f));
} }
// draw keypoints
/*Mat img; /*Mat img;
drawKeypoints(frame0, keypointsPrev_, img); drawKeypoints(frame0, keypointsPrev_, img);
imshow("frame0_keypoints", img); imshow("frame0_keypoints", img);
@ -374,10 +420,9 @@ Mat PyrLkRobustMotionEstimator::estimate(const Mat &frame0, const Mat &frame1, b
optFlowEstimator_->run(frame0, frame1, pointsPrev_, points_, status_, noArray()); optFlowEstimator_->run(frame0, frame1, pointsPrev_, points_, status_, noArray());
size_t npoints = points_.size(); size_t npoints = points_.size();
pointsPrevGood_.clear(); pointsPrevGood_.clear(); pointsPrevGood_.reserve(npoints);
pointsPrevGood_.reserve(npoints); pointsGood_.clear(); pointsGood_.reserve(npoints);
pointsGood_.clear();
pointsGood_.reserve(npoints);
for (size_t i = 0; i < npoints; ++i) for (size_t i = 0; i < npoints; ++i)
{ {
if (status_[i]) if (status_[i])

@ -338,16 +338,18 @@ void TwoPassStabilizer::runPrePassIfNecessary()
WobbleSuppressorBase *wobbleSuppressor = static_cast<WobbleSuppressorBase*>(wobbleSuppressor_); WobbleSuppressorBase *wobbleSuppressor = static_cast<WobbleSuppressorBase*>(wobbleSuppressor_);
doWobbleSuppression_ = dynamic_cast<NullWobbleSuppressor*>(wobbleSuppressor) == 0; doWobbleSuppression_ = dynamic_cast<NullWobbleSuppressor*>(wobbleSuppressor) == 0;
bool okEst; bool ok = true, ok2 = true;
while (!(frame = frameSource_->nextFrame()).empty()) while (!(frame = frameSource_->nextFrame()).empty())
{ {
if (frameCount_ > 0) if (frameCount_ > 0)
{ {
motions_.push_back(motionEstimator_->estimate(prevFrame, frame)); motions_.push_back(motionEstimator_->estimate(prevFrame, frame, &ok));
if (doWobbleSuppression_) if (doWobbleSuppression_)
{ {
Mat M = wobbleSuppressor_->motionEstimator()->estimate(prevFrame, frame, &okEst); Mat M = wobbleSuppressor_->motionEstimator()->estimate(prevFrame, frame, &ok2);
if (okEst) if (ok2)
motions2_.push_back(M); motions2_.push_back(M);
else else
motions2_.push_back(motions_.back()); motions2_.push_back(motions_.back());
@ -363,7 +365,12 @@ void TwoPassStabilizer::runPrePassIfNecessary()
prevFrame = frame; prevFrame = frame;
frameCount_++; frameCount_++;
log_->print("."); if (ok)
{
if (ok2) log_->print(".");
else log_->print("?");
}
else log_->print("x");
} }
for (int i = 0; i < radius_; ++i) for (int i = 0; i < radius_; ++i)

@ -55,7 +55,7 @@ WobbleSuppressorBase::WobbleSuppressorBase() : motions_(0), stabilizationMotions
{ {
PyrLkRobustMotionEstimator *est = new PyrLkRobustMotionEstimator(); PyrLkRobustMotionEstimator *est = new PyrLkRobustMotionEstimator();
est->setMotionModel(HOMOGRAPHY); est->setMotionModel(HOMOGRAPHY);
est->setRansacParams(RansacParams::homography2dMotionStd()); est->setRansacParams(RansacParams::default2dMotion(HOMOGRAPHY));
setMotionEstimator(est); setMotionEstimator(est);
} }

@ -67,6 +67,8 @@ void printHelp()
"Arguments:\n" "Arguments:\n"
" -m, --model=(transl|transl_and_scale|linear_sim|affine|homography)\n" " -m, --model=(transl|transl_and_scale|linear_sim|affine|homography)\n"
" Set motion model. The default is affine.\n" " Set motion model. The default is affine.\n"
" --subset=(<int_number>|auto)\n"
" Number of random samples per one motion hypothesis. The default is auto.\n"
" --outlier-ratio=<float_number>\n" " --outlier-ratio=<float_number>\n"
" Motion estimation outlier ratio hypothesis. The default is 0.5.\n" " Motion estimation outlier ratio hypothesis. The default is 0.5.\n"
" --min-inlier-ratio=<float_number>\n" " --min-inlier-ratio=<float_number>\n"
@ -116,10 +118,12 @@ void printHelp()
" --ws-model=(transl|transl_and_scale|linear_sim|affine|homography)\n" " --ws-model=(transl|transl_and_scale|linear_sim|affine|homography)\n"
" Set wobble suppression motion model (must have more DOF than motion \n" " Set wobble suppression motion model (must have more DOF than motion \n"
" estimation model). The default is homography.\n" " estimation model). The default is homography.\n"
" --ws-min-inlier-ratio=<float_number>\n" " --ws-subset=(<int_number>|auto)\n"
" Minimum inlier ratio to decide if estimated motion is OK. The default is 0.1.\n" " Number of random samples per one motion hypothesis. The default is auto.\n"
" --ws-outlier-ratio=<float_number>\n" " --ws-outlier-ratio=<float_number>\n"
" Motion estimation outlier ratio hypothesis. The default is 0.5.\n" " Motion estimation outlier ratio hypothesis. The default is 0.5.\n"
" --ws-min-inlier-ratio=<float_number>\n"
" Minimum inlier ratio to decide if estimated motion is OK. The default is 0.1.\n"
" --ws-nkps=<int_number>\n" " --ws-nkps=<int_number>\n"
" Number of keypoints to find in each frame. The default is 1000.\n" " Number of keypoints to find in each frame. The default is 1000.\n"
" --ws-extra-kps=<int_number>\n" " --ws-extra-kps=<int_number>\n"
@ -147,8 +151,9 @@ int main(int argc, const char **argv)
const char *keys = const char *keys =
"{ 1 | | | | }" "{ 1 | | | | }"
"{ m | model | affine| }" "{ m | model | affine| }"
"{ | min-inlier-ratio | 0.1 | }" "{ | subset | auto | }"
"{ | outlier-ratio | 0.5 | }" "{ | outlier-ratio | 0.5 | }"
"{ | min-inlier-ratio | 0.1 | }"
"{ | nkps | 1000 | }" "{ | nkps | 1000 | }"
"{ | extra-kps | 0 | }" "{ | extra-kps | 0 | }"
"{ sm | save-motions | no | }" "{ sm | save-motions | no | }"
@ -170,8 +175,9 @@ int main(int argc, const char **argv)
"{ ws | wobble-suppress | no | }" "{ ws | wobble-suppress | no | }"
"{ | ws-period | 30 | }" "{ | ws-period | 30 | }"
"{ | ws-model | homography | }" "{ | ws-model | homography | }"
"{ | ws-min-inlier-ratio | 0.1 | }" "{ | ws-subset | auto | }"
"{ | ws-outlier-ratio | 0.5 | }" "{ | ws-outlier-ratio | 0.5 | }"
"{ | ws-min-inlier-ratio | 0.1 | }"
"{ | ws-nkps | 1000 | }" "{ | ws-nkps | 1000 | }"
"{ | ws-extra-kps | 0 | }" "{ | ws-extra-kps | 0 | }"
"{ sm2 | save-motions2 | no | }" "{ sm2 | save-motions2 | no | }"
@ -230,6 +236,8 @@ int main(int argc, const char **argv)
est->setDetector(new GoodFeaturesToTrackDetector(argi("ws-nkps"))); est->setDetector(new GoodFeaturesToTrackDetector(argi("ws-nkps")));
RansacParams ransac = est->ransacParams(); RansacParams ransac = est->ransacParams();
if (arg("ws-subset") != "auto")
ransac.size = argi("ws-subset");
ransac.eps = argf("ws-outlier-ratio"); ransac.eps = argf("ws-outlier-ratio");
est->setRansacParams(ransac); est->setRansacParams(ransac);
est->setMinInlierRatio(argf("ws-min-inlier-ratio")); est->setMinInlierRatio(argf("ws-min-inlier-ratio"));
@ -288,6 +296,8 @@ int main(int argc, const char **argv)
est->setDetector(new GoodFeaturesToTrackDetector(argi("nkps"))); est->setDetector(new GoodFeaturesToTrackDetector(argi("nkps")));
RansacParams ransac = est->ransacParams(); RansacParams ransac = est->ransacParams();
if (arg("subset") != "auto")
ransac.size = argi("subset");
ransac.eps = argf("outlier-ratio"); ransac.eps = argf("outlier-ratio");
est->setRansacParams(ransac); est->setRansacParams(ransac);
est->setMinInlierRatio(argf("min-inlier-ratio")); est->setMinInlierRatio(argf("min-inlier-ratio"));

Loading…
Cancel
Save