Merge pull request #24445 from Abdurrahheem:ash/dev_einsum_pref

Einsum Layer Performance Test #24445

## This PR adds performance tests for Einsum Layer. See below results of performance test on different inputs

**Notation:**
- WX: windows10_x64
- MX: macos_x64
- MA: macos_arm64
- UX: ubuntu_x64
- UA: ubuntu_arm64

All data in ms (milliseconds).
Gemm is backend for matrix multiplication

---

Benchmarks:


| Equation                | Inputs Mat Dims                   | UX (ms)        | UA (ms) | MX (ms) | MA (ms) | WX (ms) |
|-------------------------|-----------------------------------|----------------|---------|---------|---------|---------|
| "ij, jk -> ik"          | [2, 3], [3,2]                     | 0.04 ± 0.00    | -       | -       | -       | -       |
| "ij, jk -> ik"          | [20, 30], [30,20]                 | 0.08 ± 0.00    | -       | -       | -       | -       |
| "ij, jk -> ik"          | [113, 127], [127,113]             | 2.41 ± 0.05    | -       | -       | -       | -       |
| "imkj, injs -> imnks"   | [1, 4, 7, 9], [1, 5, 9, 8]        | 0.11 ± 0.00    | -       | -       | -       | -       |
| "imkj, injs -> imnks"   | [1, 4, 70, 90], [1, 5, 90, 80]    | 15.49 ± 0.46   | -       | -       | -       | -       |
| "imkj, injs -> imnks"   | [1, 4, 73, 91], [1, 5, 91, 57]    | 11.53 ± 0.06   | -       | -       | -       | -       |
| "ij -> i"               | [30, 40]                          | 0.03 ± 0.00    | -       | -       | -       | -       |
| "ij -> i"               | [113, 374]                        | 0.13 ± 0.00    | -       | -       | -       | -       |
| "...ij -> ...i"         | [30, 40]                          | 0.03 ± 0.00    | -       | -       | -       | -       |
| "...ij -> ...i"         | [113, 374]                        | 0.13 ± 0.00    | -       | -       | -       | -       |
| "...ij, ...jk -> ...ik" | [40, 50], [50,80]                 | 0.37 ± 0.01    | -       | -       | -       | -       |
| "...ij, ...jk -> ...ik" | [47, 51], [51, 83]                | 0.43 ± 0.01    | -       | -       | -       | -       |

-----

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
pull/24511/head
Abduragim Shtanchaev 1 year ago committed by GitHub
parent 81907af74c
commit 9d0c8a9edb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 123
      modules/dnn/perf/perf_einsum.cpp

@ -0,0 +1,123 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
namespace opencv_test {
struct EinsumParams {
int inputSize;
int outputSize;
std::string equation;
std::vector<MatShape> einsumInpShapes;
EinsumParams(std::string equation_, int inputSize_, int outputSize_, std::vector<MatShape> einsumInpShapes_ = std::vector<MatShape>())
{
inputSize = inputSize_;
outputSize = outputSize_;
equation = equation_;
einsumInpShapes = einsumInpShapes_;
}
};
static inline void PrintTo(const EinsumParams& params, ::std::ostream* os) {
(*os) << "Eqiation=" << params.equation << ", "
<< "InputSize=" << params.inputSize << ", "
<< "OutputSize=" << params.outputSize << ", ";
(*os) << "InputShape={";
for(int i = 0; i < params.einsumInpShapes.size(); i++)
{
(*os) << "{";
for(int j = 0; j < params.einsumInpShapes[i].size(); j++)
{
(*os) << params.einsumInpShapes[i][j] << ((j < params.einsumInpShapes[i].size() - 1) ? ", " : "");
}
(*os) << ((i < params.einsumInpShapes.size() - 1) ? "}, " : "}");
}
(*os) << "}";
}
// test cases
static const EinsumParams testEinsumConfigs[] = {
// TODO: Add tests with one input after ellips merge
{"ij, jk -> ik", 2, 1, {{2, 3}, {3, 2}}},
{"ij, jk -> ik", 2, 1, {{20, 30}, {30, 20}}},
{"ij, jk -> ik", 2, 1, {{113, 127}, {127, 113}}},
{"imkj, injs -> imnks", 2, 1, {{1, 4, 7, 9}, {1, 5, 9, 8}}},
{"imkj, injs -> imnks", 2, 1, {{1, 4, 70, 90}, {1, 5, 90, 80}}},
{"imkj, injs -> imnks", 2, 1, {{1, 4, 73, 91}, {1, 5, 91, 57}}},
{"ij -> i", 1, 1, {{30, 40}}},
{"ij -> i", 1, 1, {{113, 374}}},
{"...ij -> ...i", 1, 1, {{30, 40}}},
{"...ij -> ...i", 1, 1, {{113, 374}}},
{"...ij, ...jk -> ...ik", 2, 1, {{40, 50}, {50, 80}}},
{"...ij, ...jk -> ...ik", 2, 1, {{47, 51}, {51, 83}}},
};
class Layer_Einsum: public TestBaseWithParam<EinsumParams> {};
PERF_TEST_P_(Layer_Einsum, einsum) {
const EinsumParams& params = GetParam();
LayerParams lp;
lp.type = "Einsum";
lp.name = "testEinsum";
lp.set("equation", params.equation);
lp.set("inputSize", params.inputSize);
lp.set("outputSize", params.outputSize);
CV_CheckFalse(params.einsumInpShapes.empty(), "ERROR no inputs shapes provided");
for (int i = 0; i < params.einsumInpShapes.size(); i++) {
lp.set("inputShapes" + cv::format("%d", i), DictValue::arrayInt(params.einsumInpShapes[i].begin(), params.einsumInpShapes[i].size()));
}
Net net;
std::vector<Mat> inputs;
std::vector<std::string> input_names;
if (params.inputSize == 1){
// create inputs
inputs.emplace_back(Mat(params.einsumInpShapes[0].size(), params.einsumInpShapes[0].data(), CV_32FC1));
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 0, id, 0);
input_names.emplace_back("input1");
} else {
// create inputs
inputs.emplace_back(Mat(params.einsumInpShapes[0].size(), params.einsumInpShapes[0].data(), CV_32FC1));
inputs.emplace_back(Mat(params.einsumInpShapes[1].size(), params.einsumInpShapes[1].data(), CV_32FC1));
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 0, id, 0);
net.connect(0, 1, id, 1);
input_names.emplace_back("input1");
input_names.emplace_back("input2");
}
//warm up
net.setInputsNames(input_names);
for (int i = 0; i < input_names.size(); i++){
net.setInput(inputs[i], input_names[i]);
}
Mat out = net.forward();
std::vector<Mat> outputs;
TEST_CYCLE()
{
net.forward(outputs, "testEinsum");
}
SANITY_CHECK_NOTHING();
}
INSTANTIATE_TEST_CASE_P(/**/, Layer_Einsum, testing::ValuesIn(testEinsumConfigs));
}; //namespace
Loading…
Cancel
Save