mirror of https://github.com/opencv/opencv.git
Merge pull request #14109 from PedroFerreiradaCosta:adding_python_version_to_anisotropic_tutorial
* Created python version of the code for the anisotropic image segmentation tutorial. Created python/cpp toggles for the markdown file. * fix doxygen warningspull/14117/head
parent
865bd7abff
commit
9cef78b685
2 changed files with 135 additions and 6 deletions
@ -0,0 +1,92 @@ |
||||
|
||||
import cv2 as cv |
||||
import numpy as np |
||||
import argparse |
||||
|
||||
W = 52 # window size is WxW |
||||
C_Thr = 0.43 # threshold for coherency |
||||
LowThr = 35 # threshold1 for orientation, it ranges from 0 to 180 |
||||
HighThr = 57 # threshold2 for orientation, it ranges from 0 to 180 |
||||
|
||||
## [calcGST] |
||||
## [calcJ_header] |
||||
## [calcGST_proto] |
||||
def calcGST(inputIMG, w): |
||||
## [calcGST_proto] |
||||
img = inputIMG.astype(np.float32) |
||||
|
||||
# GST components calculation (start) |
||||
# J = (J11 J12; J12 J22) - GST |
||||
imgDiffX = cv.Sobel(img, cv.CV_32F, 1, 0, 3) |
||||
imgDiffY = cv.Sobel(img, cv.CV_32F, 0, 1, 3) |
||||
imgDiffXY = cv.multiply(imgDiffX, imgDiffY) |
||||
## [calcJ_header] |
||||
|
||||
imgDiffXX = cv.multiply(imgDiffX, imgDiffX) |
||||
imgDiffYY = cv.multiply(imgDiffY, imgDiffY) |
||||
|
||||
J11 = cv.boxFilter(imgDiffXX, cv.CV_32F, (w,w)) |
||||
J22 = cv.boxFilter(imgDiffYY, cv.CV_32F, (w,w)) |
||||
J12 = cv.boxFilter(imgDiffXY, cv.CV_32F, (w,w)) |
||||
# GST components calculations (stop) |
||||
|
||||
# eigenvalue calculation (start) |
||||
# lambda1 = J11 + J22 + sqrt((J11-J22)^2 + 4*J12^2) |
||||
# lambda2 = J11 + J22 - sqrt((J11-J22)^2 + 4*J12^2) |
||||
tmp1 = J11 + J22 |
||||
tmp2 = J11 - J22 |
||||
tmp2 = cv.multiply(tmp2, tmp2) |
||||
tmp3 = cv.multiply(J12, J12) |
||||
tmp4 = np.sqrt(tmp2 + 4.0 * tmp3) |
||||
|
||||
lambda1 = tmp1 + tmp4 # biggest eigenvalue |
||||
lambda2 = tmp1 - tmp4 # smallest eigenvalue |
||||
# eigenvalue calculation (stop) |
||||
|
||||
# Coherency calculation (start) |
||||
# Coherency = (lambda1 - lambda2)/(lambda1 + lambda2)) - measure of anisotropism |
||||
# Coherency is anisotropy degree (consistency of local orientation) |
||||
imgCoherencyOut = cv.divide(lambda1 - lambda2, lambda1 + lambda2) |
||||
# Coherency calculation (stop) |
||||
|
||||
# orientation angle calculation (start) |
||||
# tan(2*Alpha) = 2*J12/(J22 - J11) |
||||
# Alpha = 0.5 atan2(2*J12/(J22 - J11)) |
||||
imgOrientationOut = cv.phase(J22 - J11, 2.0 * J12, angleInDegrees = True) |
||||
imgOrientationOut = 0.5 * imgOrientationOut |
||||
# orientation angle calculation (stop) |
||||
|
||||
return imgCoherencyOut, imgOrientationOut |
||||
## [calcGST] |
||||
|
||||
parser = argparse.ArgumentParser(description='Code for Anisotropic image segmentation tutorial.') |
||||
parser.add_argument('-i', '--input', help='Path to input image.', required=True) |
||||
args = parser.parse_args() |
||||
|
||||
imgIn = cv.imread(args.input, cv.IMREAD_GRAYSCALE) |
||||
if imgIn is None: |
||||
print('Could not open or find the image: {}'.format(args.input)) |
||||
exit(0) |
||||
|
||||
## [main_extra] |
||||
## [main] |
||||
imgCoherency, imgOrientation = calcGST(imgIn, W) |
||||
|
||||
## [thresholding] |
||||
_, imgCoherencyBin = cv.threshold(imgCoherency, C_Thr, 255, cv.THRESH_BINARY) |
||||
_, imgOrientationBin = cv.threshold(imgOrientation, LowThr, HighThr, cv.THRESH_BINARY) |
||||
## [thresholding] |
||||
|
||||
## [combining] |
||||
imgBin = cv.bitwise_and(imgCoherencyBin, imgOrientationBin) |
||||
## [combining] |
||||
## [main] |
||||
|
||||
imgCoherency = cv.normalize(imgCoherency, None, alpha=0, beta=1, norm_type=cv.NORM_MINMAX, dtype=cv.CV_32F) |
||||
imgOrientation = cv.normalize(imgOrientation, None, alpha=0, beta=1, norm_type=cv.NORM_MINMAX, dtype=cv.CV_32F) |
||||
|
||||
cv.imshow('result.jpg', np.uint8(0.5*(imgIn + imgBin))) |
||||
cv.imshow('Coherency.jpg', imgCoherency) |
||||
cv.imshow('Orientation.jpg', imgOrientation) |
||||
cv.waitKey(0) |
||||
## [main_extra] |
Loading…
Reference in new issue