parent
5df9da1576
commit
9ce4e87507
8 changed files with 276 additions and 3 deletions
@ -0,0 +1,256 @@ |
||||
.. _Pyramids: |
||||
|
||||
Image Pyramids |
||||
*************** |
||||
|
||||
Goal |
||||
===== |
||||
|
||||
In this tutorial you will learn how to: |
||||
|
||||
* Use the OpenCV functions :pyr_up:`pyrUp <>` and :pyr_down:`pyrDown <>` to downsample or upsample a given image. |
||||
|
||||
Cool Theory |
||||
============ |
||||
|
||||
.. note:: |
||||
The explanation below belongs to the book **Learning OpenCV** by Bradski and Kaehler. |
||||
|
||||
* Usually we need to convert an image to a size different than its original. For this, there are two possible options: |
||||
|
||||
* *Upsize* the image (zoom in) or |
||||
* *Downsize* it (zoom out). |
||||
|
||||
* Although there is a *geometric transformation* function in OpenCV that -literally- resize an image (:resize:`resize <>`, which we will show in a future tutorial), in this section we analyze first the use of **Image Pyramids**, which are widely applied in a huge range of vision applications. |
||||
|
||||
Image Pyramid |
||||
-------------- |
||||
|
||||
* An image pyramid is a collection of images - all arising from a single original image - that are successively downsampled until some desired stopping point is reached. |
||||
|
||||
* There are two common kinds of image pyramids: |
||||
|
||||
* **Gaussian pyramid:** Used to downsample images |
||||
|
||||
* **Laplacian pyramid:** Used to reconstruct an upsampled image from an image lower in the pyramid (with less resolution) |
||||
|
||||
* In this tutorial we'll use the *Gaussian pyramid*. |
||||
|
||||
Gaussian Pyramid |
||||
^^^^^^^^^^^^^^^^^ |
||||
|
||||
* Imagine the pyramid as a set of layers in which the higher the layer, the smaller the size. |
||||
|
||||
.. image:: images/Pyramids_Tutorial_Pyramid_Theory.png |
||||
:alt: Pyramid figure |
||||
:align: center |
||||
|
||||
* Every layer is numbered from bottom to top, so layer :math:`(i+1)` (denoted as :math:`G_{i+1}` is smaller than layer :math:`i` (:math:`G_{i}`). |
||||
|
||||
* To produce layer :math:`(i+1)` in the Gaussian pyramid, we do the following: |
||||
|
||||
* Convolve :math:`G_{i}` with a Gaussian kernel: |
||||
|
||||
.. math:: |
||||
|
||||
\frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} |
||||
|
||||
* Remove every even-numbered row and column. |
||||
|
||||
* You can easily notice that the resulting image will be exactly one-quarter the area of its predecessor. Iterating this process on the input image :math:`G_{0}` (original image) produces the entire pyramid. |
||||
|
||||
* The procedure above was useful to downsample an image. What if we want to make it bigger?: |
||||
|
||||
* First, upsize the image to twice the original in each dimension, wit the new even rows and columns filled with zeros (:math:`0`) |
||||
|
||||
* Perform a convolution with the same kernel shown above (multiplied by 4) to approximate the values of the "missing pixels" |
||||
|
||||
* These two procedures (downsampling and upsampling as explained above) are implemented by the OpenCV functions :pyr_up:`pyrUp <>` and :pyr_down:`pyrDown <>`, as we will see in an example with the code below: |
||||
|
||||
.. note:: |
||||
When we reduce the size of an image, we are actually *losing* information of the image. |
||||
|
||||
Code |
||||
====== |
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Image_Processing/Pyramids.cpp>`_ |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
#include "opencv2/imgproc/imgproc.hpp" |
||||
#include "opencv2/highgui/highgui.hpp" |
||||
#include <math.h> |
||||
#include <stdlib.h> |
||||
#include <stdio.h> |
||||
|
||||
using namespace cv; |
||||
|
||||
/// Global variables |
||||
Mat src, dst, tmp; |
||||
char* window_name = "Pyramids Demo"; |
||||
|
||||
|
||||
/** |
||||
* @function main |
||||
*/ |
||||
int main( int argc, char** argv ) |
||||
{ |
||||
/// General instructions |
||||
printf( "\n Zoom In-Out demo \n " ); |
||||
printf( "------------------ \n" ); |
||||
printf( " * [u] -> Zoom in \n" ); |
||||
printf( " * [d] -> Zoom out \n" ); |
||||
printf( " * [ESC] -> Close program \n \n" ); |
||||
|
||||
/// Test image - Make sure it s divisible by 2^{n} |
||||
src = imread( "../images/chicky_512.png" ); |
||||
if( !src.data ) |
||||
{ printf(" No data! -- Exiting the program \n"); |
||||
return -1; } |
||||
|
||||
tmp = src; |
||||
dst = tmp; |
||||
|
||||
/// Create window |
||||
namedWindow( window_name, CV_WINDOW_AUTOSIZE ); |
||||
imshow( window_name, dst ); |
||||
|
||||
/// Loop |
||||
while( true ) |
||||
{ |
||||
int c; |
||||
c = waitKey(10); |
||||
|
||||
if( (char)c == 27 ) |
||||
{ break; } |
||||
if( (char)c == 'u' ) |
||||
{ pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 ) ); |
||||
printf( "** Zoom In: Image x 2 \n" ); |
||||
} |
||||
else if( (char)c == 'd' ) |
||||
{ pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 ) ); |
||||
printf( "** Zoom Out: Image / 2 \n" ); |
||||
} |
||||
|
||||
imshow( window_name, dst ); |
||||
tmp = dst; |
||||
} |
||||
return 0; |
||||
} |
||||
|
||||
Explanation |
||||
============= |
||||
|
||||
#. Let's check the general structure of the program: |
||||
|
||||
* Load an image (in this case it is defined in the program, the user does not have to enter it as an argument) |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
/// Test image - Make sure it s divisible by 2^{n} |
||||
src = imread( "../images/chicky_512.png" ); |
||||
if( !src.data ) |
||||
{ printf(" No data! -- Exiting the program \n"); |
||||
return -1; } |
||||
|
||||
* Create a Mat object to store the result of the operations (*dst*) and one to save temporal results (*tmp*). |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
Mat src, dst, tmp; |
||||
/* ... */ |
||||
tmp = src; |
||||
dst = tmp; |
||||
|
||||
|
||||
|
||||
* Create a window to display the result |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
namedWindow( window_name, CV_WINDOW_AUTOSIZE ); |
||||
imshow( window_name, dst ); |
||||
|
||||
* Perform an infinite loop waiting for user input. |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
while( true ) |
||||
{ |
||||
int c; |
||||
c = waitKey(10); |
||||
|
||||
if( (char)c == 27 ) |
||||
{ break; } |
||||
if( (char)c == 'u' ) |
||||
{ pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 ) ); |
||||
printf( "** Zoom In: Image x 2 \n" ); |
||||
} |
||||
else if( (char)c == 'd' ) |
||||
{ pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 ) ); |
||||
printf( "** Zoom Out: Image / 2 \n" ); |
||||
} |
||||
|
||||
imshow( window_name, dst ); |
||||
tmp = dst; |
||||
} |
||||
|
||||
|
||||
Our program exits if the user presses *ESC*. Besides, it has two options: |
||||
|
||||
* **Perform upsampling (after pressing 'u')** |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
pyrUp( tmp, dst, Size( tmp.cols*2, tmp.rows*2 ) |
||||
|
||||
We use the function :pyr_up:`pyrUp <>` with 03 arguments: |
||||
|
||||
* *tmp*: The current image, it is initialized with the *src* original image. |
||||
* *dst*: The destination image (to be shown on screen, supposedly the double of the input image) |
||||
* *Size( tmp.cols*2, tmp.rows*2 )* : The destination size. Since we are upsampling, :pyr_up:`pyrUp <>` expects a size double than the input image (in this case *tmp*). |
||||
|
||||
* **Perform downsampling (after pressing 'd')** |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
pyrDown( tmp, dst, Size( tmp.cols/2, tmp.rows/2 ) |
||||
|
||||
Similarly as with :pyr_up:`pyrUp <>`, we use the function :pyr_down:`pyrDown <>` with 03 arguments: |
||||
|
||||
* *tmp*: The current image, it is initialized with the *src* original image. |
||||
* *dst*: The destination image (to be shown on screen, supposedly half the input image) |
||||
* *Size( tmp.cols/2, tmp.rows/2 )* : The destination size. Since we are upsampling, :pyr_down:`pyrDown <>` expects half the size the input image (in this case *tmp*). |
||||
|
||||
* Notice that it is important that the input image can be divided by a factor of two (in both dimensions). Otherwise, an error will be shown. |
||||
|
||||
* Finally, we update the input image **tmp** with the current image displayed, so the subsequent operations are performed on it. |
||||
|
||||
.. code-block:: cpp |
||||
|
||||
tmp = dst; |
||||
|
||||
|
||||
|
||||
Results |
||||
======== |
||||
|
||||
* After compiling the code above we can test it. The program calls an image **chicky_512.png** that comes in the *tutorial_code/image* folder. Notice that this image is :math:`512 \times 512`, hence a downsample won't generate any error (:math:`512 = 2^{9}`). The original image is shown below: |
||||
|
||||
.. image:: images/Pyramids_Tutorial_Original_Image.png |
||||
:alt: Pyramids: Original image |
||||
:align: center |
||||
|
||||
* First we apply two successive :pyr_down:`pyrDown <>` operations by pressing 'd'. Our output is: |
||||
|
||||
.. image:: images/Pyramids_Tutorial_PyrDown_Result.png |
||||
:alt: Pyramids: PyrDown Result |
||||
:align: center |
||||
|
||||
* Note that we should have lost some resolution due to the fact that we are diminishing the size of the image. This is evident after we apply :pyr_up:`pyrUp <>` twice (by pressing 'u'). Our output is now: |
||||
|
||||
.. image:: images/Pyramids_Tutorial_PyrUp_Result.png |
||||
:alt: Pyramids: PyrUp Result |
||||
:align: center |
||||
|
||||
|
After Width: | Height: | Size: 290 KiB |
After Width: | Height: | Size: 574 KiB |
After Width: | Height: | Size: 38 KiB |
After Width: | Height: | Size: 237 KiB |
After Width: | Height: | Size: 30 KiB |
Loading…
Reference in new issue