Merge pull request #14689 from anton-potapov:gapi_async_cacnel

pull/14851/head
Alexander Alekhin 6 years ago
commit 9cb239247d
  1. 1
      modules/gapi/cmake/standalone.cmake
  2. 38
      modules/gapi/include/opencv2/gapi/gasync_context.hpp
  3. 7
      modules/gapi/include/opencv2/gapi/gcompiled_async.hpp
  4. 10
      modules/gapi/include/opencv2/gapi/gcomputation_async.hpp
  5. 4
      modules/gapi/include/opencv2/gapi/own/cvdefs.hpp
  6. 121
      modules/gapi/src/executor/gasync.cpp
  7. 138
      modules/gapi/test/gapi_async_test.cpp

@ -37,6 +37,7 @@ set_property(TARGET ${FLUID_TARGET} PROPERTY CXX_STANDARD 11)
if(MSVC) if(MSVC)
target_compile_options(${FLUID_TARGET} PUBLIC "/wd4251") target_compile_options(${FLUID_TARGET} PUBLIC "/wd4251")
target_compile_options(${FLUID_TARGET} PUBLIC "/wd4275")
target_compile_definitions(${FLUID_TARGET} PRIVATE _CRT_SECURE_NO_DEPRECATE) target_compile_definitions(${FLUID_TARGET} PRIVATE _CRT_SECURE_NO_DEPRECATE)
endif() endif()

@ -0,0 +1,38 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_GASYNC_CONTEXT_HPP
#define OPENCV_GAPI_GASYNC_CONTEXT_HPP
#if !defined(GAPI_STANDALONE)
# include <opencv2/core/cvdef.h>
#else // Without OpenCV
# include <opencv2/gapi/own/cvdefs.hpp>
#endif // !defined(GAPI_STANDALONE)
#include <opencv2/gapi/own/exports.hpp>
namespace cv {
namespace gapi{
namespace wip {
class GAPI_EXPORTS GAsyncContext{
std::atomic<bool> cancelation_requested = {false};
public:
//returns true if it was a first request to cancel the context
bool cancel();
bool isCanceled() const;
};
class GAPI_EXPORTS GAsyncCanceled : public std::exception {
public:
virtual const char* what() const noexcept CV_OVERRIDE;
};
} // namespace wip
} // namespace gapi
} // namespace cv
#endif //OPENCV_GAPI_GASYNC_CONTEXT_HPP

@ -12,6 +12,7 @@
#include <exception> //for std::exception_ptr #include <exception> //for std::exception_ptr
#include <functional> //for std::function #include <functional> //for std::function
#include <opencv2/gapi/garg.hpp> #include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/own/exports.hpp>
namespace cv { namespace cv {
//fwd declaration //fwd declaration
@ -19,13 +20,17 @@ namespace cv {
namespace gapi{ namespace gapi{
namespace wip { namespace wip {
class GAsyncContext;
//These functions asynchronously (i.e. probably on a separate thread of execution) call operator() member function of their first argument with copies of rest of arguments (except callback) passed in. //These functions asynchronously (i.e. probably on a separate thread of execution) call operator() member function of their first argument with copies of rest of arguments (except callback) passed in.
//The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object) //The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object)
//If exception is occurred during execution of apply it is transfered to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get) //If exception is occurred during execution of apply it is transfered to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
GAPI_EXPORTS void async(GCompiled& gcmpld, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs); GAPI_EXPORTS void async(GCompiled& gcmpld, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs);
GAPI_EXPORTS void async(GCompiled& gcmpld, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GAsyncContext& ctx);
GAPI_EXPORTS std::future<void> async(GCompiled& gcmpld, GRunArgs &&ins, GRunArgsP &&outs); GAPI_EXPORTS std::future<void> async(GCompiled& gcmpld, GRunArgs &&ins, GRunArgsP &&outs);
} // namespace gapi GAPI_EXPORTS std::future<void> async(GCompiled& gcmpld, GRunArgs &&ins, GRunArgsP &&outs, GAsyncContext& ctx);
} // namespace wip } // namespace wip
} // namespace gapi
} // namespace cv } // namespace cv
#endif // OPENCV_GAPI_GCOMPILED_ASYNC_HPP #endif // OPENCV_GAPI_GCOMPILED_ASYNC_HPP

@ -8,24 +8,30 @@
#define OPENCV_GAPI_GCOMPUTATION_ASYNC_HPP #define OPENCV_GAPI_GCOMPUTATION_ASYNC_HPP
#include <future> #include <future> //for std::future
#include <exception> //for std::exception_ptr #include <exception> //for std::exception_ptr
#include <functional> //for std::function #include <functional> //for std::function
#include <opencv2/gapi/garg.hpp> //for GRunArgs, GRunArgsP #include <opencv2/gapi/garg.hpp> //for GRunArgs, GRunArgsP
#include <opencv2/gapi/gcommon.hpp> //for GCompileArgs #include <opencv2/gapi/gcommon.hpp> //for GCompileArgs
#include <opencv2/gapi/own/exports.hpp>
namespace cv { namespace cv {
//fwd declaration //fwd declaration
class GComputation; class GComputation;
namespace gapi { namespace gapi {
namespace wip { namespace wip {
class GAsyncContext;
//These functions asynchronously (i.e. probably on a separate thread of execution) call apply member function of their first argument with copies of rest of arguments (except callback) passed in. //These functions asynchronously (i.e. probably on a separate thread of execution) call apply member function of their first argument with copies of rest of arguments (except callback) passed in.
//The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object) //The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object)
//If exception is occurred during execution of apply it is transfered to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get) //If exception is occurred during execution of apply it is transfered to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
GAPI_EXPORTS void async_apply(GComputation& gcomp, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {}); GAPI_EXPORTS void async_apply(GComputation& gcomp, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {});
GAPI_EXPORTS void async_apply(GComputation& gcomp, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args, GAsyncContext& ctx);
GAPI_EXPORTS std::future<void> async_apply(GComputation& gcomp, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {}); GAPI_EXPORTS std::future<void> async_apply(GComputation& gcomp, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {});
} // nmaepspace gapi GAPI_EXPORTS std::future<void> async_apply(GComputation& gcomp, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args, GAsyncContext& ctx);
} // namespace wip } // namespace wip
} // namespace gapi
} // namespace cv } // namespace cv

@ -108,6 +108,10 @@ typedef unsigned short ushort;
#define CV_ELEM_SIZE(type) \ #define CV_ELEM_SIZE(type) \
(CV_MAT_CN(type) << ((((sizeof(size_t)/4+1)*16384|0x3a50) >> CV_MAT_DEPTH(type)*2) & 3)) (CV_MAT_CN(type) << ((((sizeof(size_t)/4+1)*16384|0x3a50) >> CV_MAT_DEPTH(type)*2) & 3))
#ifndef CV_OVERRIDE
# define CV_OVERRIDE override
#endif
// base.h: // base.h:
namespace cv namespace cv
{ {

@ -4,10 +4,12 @@
// //
// Copyright (C) 2019 Intel Corporation // Copyright (C) 2019 Intel Corporation
#include <opencv2/gapi/gcomputation_async.hpp> #include <opencv2/gapi/gcomputation_async.hpp>
#include <opencv2/gapi/gcomputation.hpp> #include <opencv2/gapi/gcomputation.hpp>
#include <opencv2/gapi/gcompiled_async.hpp> #include <opencv2/gapi/gcompiled_async.hpp>
#include <opencv2/gapi/gcompiled.hpp> #include <opencv2/gapi/gcompiled.hpp>
#include <opencv2/gapi/gasync_context.hpp>
#include <condition_variable> #include <condition_variable>
@ -19,11 +21,11 @@
namespace { namespace {
//This is a tool to move initialize captures of a lambda in C++11 //This is a tool to move initialize captures of a lambda in C++11
template<typename T> template<typename T>
struct move_through_copy{ struct copy_through_move{
T value; T value;
move_through_copy(T&& g) : value(std::move(g)) {} copy_through_move(T&& g) : value(std::move(g)) {}
move_through_copy(move_through_copy&&) = default; copy_through_move(copy_through_move&&) = default;
move_through_copy(move_through_copy const& lhs) : move_through_copy(std::move(const_cast<move_through_copy&>(lhs))) {} copy_through_move(copy_through_move const& lhs) : copy_through_move(std::move(const_cast<copy_through_move&>(lhs))) {}
}; };
} }
@ -80,6 +82,7 @@ public:
}}; }};
} }
} }
std::unique_lock<std::mutex> lck{mtx}; std::unique_lock<std::mutex> lck{mtx};
bool first_task = q.empty(); bool first_task = q.empty();
q.push(std::move(t)); q.push(std::move(t));
@ -108,8 +111,12 @@ async_service the_ctx;
} }
namespace { namespace {
template<typename f_t> template<typename f_t, typename context_t>
std::exception_ptr call_and_catch(f_t&& f){ std::exception_ptr call_and_catch(f_t&& f, context_t&& ctx){
if (std::forward<context_t>(ctx).isCanceled()){
return std::make_exception_ptr(GAsyncCanceled{});
}
std::exception_ptr eptr; std::exception_ptr eptr;
try { try {
std::forward<f_t>(f)(); std::forward<f_t>(f)();
@ -120,15 +127,21 @@ std::exception_ptr call_and_catch(f_t&& f){
return eptr; return eptr;
} }
template<typename f_t, typename callback_t> struct DummyContext {
void call_with_callback(f_t&& f, callback_t&& cb){ bool isCanceled() const {
auto eptr = call_and_catch(std::forward<f_t>(f)); return false;
}
};
template<typename f_t, typename callback_t, typename context_t>
void call_with_callback(f_t&& f, callback_t&& cb, context_t&& ctx){
auto eptr = call_and_catch(std::forward<f_t>(f), std::forward<context_t>(ctx));
std::forward<callback_t>(cb)(eptr); std::forward<callback_t>(cb)(eptr);
} }
template<typename f_t> template<typename f_t, typename context_t>
void call_with_futute(f_t&& f, std::promise<void>& p){ void call_with_future(f_t&& f, std::promise<void>& p, context_t&& ctx){
auto eptr = call_and_catch(std::forward<f_t>(f)); auto eptr = call_and_catch(std::forward<f_t>(f), std::forward<context_t>(ctx));
if (eptr){ if (eptr){
p.set_exception(eptr); p.set_exception(eptr);
} }
@ -138,56 +151,126 @@ void call_with_futute(f_t&& f, std::promise<void>& p){
} }
}//namespace }//namespace
bool GAsyncContext::cancel(){
bool expected = false;
bool updated = cancelation_requested.compare_exchange_strong(expected, true);
return updated;
}
bool GAsyncContext::isCanceled() const {
return cancelation_requested.load();
}
const char* GAsyncCanceled::what() const noexcept {
return "GAPI asynchronous operation was canceled";
}
//For now these async functions are simply wrapping serial version of apply/operator() into a functor. //For now these async functions are simply wrapping serial version of apply/operator() into a functor.
//These functors are then serialized into single queue, which is processed by a devoted background thread. //These functors are then serialized into single queue, which is processed by a devoted background thread.
void async_apply(GComputation& gcomp, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args){ void async_apply(GComputation& gcomp, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args){
//TODO: use move_through_copy for all args except gcomp //TODO: use copy_through_move for all args except gcomp
//TODO: avoid code duplication between versions of "async" functions
auto l = [=]() mutable { auto l = [=]() mutable {
auto apply_l = [&](){ auto apply_l = [&](){
gcomp.apply(std::move(ins), std::move(outs), std::move(args)); gcomp.apply(std::move(ins), std::move(outs), std::move(args));
}; };
call_with_callback(apply_l,std::move(callback)); call_with_callback(apply_l,std::move(callback), DummyContext{});
}; };
impl::the_ctx.add_task(l); impl::the_ctx.add_task(l);
} }
std::future<void> async_apply(GComputation& gcomp, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args){ std::future<void> async_apply(GComputation& gcomp, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args){
move_through_copy<std::promise<void>> prms{{}}; copy_through_move<std::promise<void>> prms{{}};
auto f = prms.value.get_future(); auto f = prms.value.get_future();
auto l = [=]() mutable { auto l = [=]() mutable {
auto apply_l = [&](){ auto apply_l = [&](){
gcomp.apply(std::move(ins), std::move(outs), std::move(args)); gcomp.apply(std::move(ins), std::move(outs), std::move(args));
}; };
call_with_futute(apply_l, prms.value); call_with_future(apply_l, prms.value, DummyContext{});
}; };
impl::the_ctx.add_task(l); impl::the_ctx.add_task(l);
return f; return f;
} }
void async_apply(GComputation& gcomp, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args, GAsyncContext& ctx){
//TODO: use copy_through_move for all args except gcomp
auto l = [=, &ctx]() mutable {
auto apply_l = [&](){
gcomp.apply(std::move(ins), std::move(outs), std::move(args));
};
call_with_callback(apply_l,std::move(callback), ctx);
};
impl::the_ctx.add_task(l);
}
std::future<void> async_apply(GComputation& gcomp, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args, GAsyncContext& ctx){
copy_through_move<std::promise<void>> prms{{}};
auto f = prms.value.get_future();
auto l = [=, &ctx]() mutable {
auto apply_l = [&](){
gcomp.apply(std::move(ins), std::move(outs), std::move(args));
};
call_with_future(apply_l, prms.value, ctx);
};
impl::the_ctx.add_task(l);
return f;
}
void async(GCompiled& gcmpld, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs){ void async(GCompiled& gcmpld, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs){
auto l = [=]() mutable { auto l = [=]() mutable {
auto apply_l = [&](){ auto apply_l = [&](){
gcmpld(std::move(ins), std::move(outs)); gcmpld(std::move(ins), std::move(outs));
}; };
call_with_callback(apply_l,std::move(callback)); call_with_callback(apply_l,std::move(callback), DummyContext{});
};
impl::the_ctx.add_task(l);
}
void async(GCompiled& gcmpld, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GAsyncContext& ctx){
auto l = [=, &ctx]() mutable {
auto apply_l = [&](){
gcmpld(std::move(ins), std::move(outs));
};
call_with_callback(apply_l,std::move(callback), ctx);
}; };
impl::the_ctx.add_task(l); impl::the_ctx.add_task(l);
} }
std::future<void> async(GCompiled& gcmpld, GRunArgs &&ins, GRunArgsP &&outs){ std::future<void> async(GCompiled& gcmpld, GRunArgs &&ins, GRunArgsP &&outs){
move_through_copy<std::promise<void>> prms{{}}; copy_through_move<std::promise<void>> prms{{}};
auto f = prms.value.get_future(); auto f = prms.value.get_future();
auto l = [=]() mutable { auto l = [=]() mutable {
auto apply_l = [&](){ auto apply_l = [&](){
gcmpld(std::move(ins), std::move(outs)); gcmpld(std::move(ins), std::move(outs));
}; };
call_with_futute(apply_l, prms.value); call_with_future(apply_l, prms.value, DummyContext{});
};
impl::the_ctx.add_task(l);
return f;
}
std::future<void> async(GCompiled& gcmpld, GRunArgs &&ins, GRunArgsP &&outs, GAsyncContext& ctx){
copy_through_move<std::promise<void>> prms{{}};
auto f = prms.value.get_future();
auto l = [=, &ctx]() mutable {
auto apply_l = [&](){
gcmpld(std::move(ins), std::move(outs));
};
call_with_future(apply_l, prms.value, ctx);
}; };
impl::the_ctx.add_task(l); impl::the_ctx.add_task(l);

@ -8,6 +8,8 @@
#include "test_precomp.hpp" #include "test_precomp.hpp"
#include <opencv2/gapi/gcomputation_async.hpp> #include <opencv2/gapi/gcomputation_async.hpp>
#include <opencv2/gapi/gcompiled_async.hpp> #include <opencv2/gapi/gcompiled_async.hpp>
#include <opencv2/gapi/gasync_context.hpp>
#include <condition_variable> #include <condition_variable>
#include <stdexcept> #include <stdexcept>
@ -78,6 +80,32 @@ namespace {
} }
} }
}; };
//TODO: unify with callback helper code
struct cancel_struct {
std::atomic<int> num_tasks_to_spawn;
cv::gapi::wip::GAsyncContext ctx;
cancel_struct(int tasks_to_spawn) : num_tasks_to_spawn(tasks_to_spawn) {}
};
G_TYPED_KERNEL(GCancelationAdHoc, <GMat(GMat, cancel_struct*)>, "org.opencv.test.cancel_ad_hoc")
{
static GMatDesc outMeta(GMatDesc in, cancel_struct* ) { return in; }
};
GAPI_OCV_KERNEL(GCancelationAdHocImpl, GCancelationAdHoc)
{
static void run(const cv::Mat& , cancel_struct* cancel_struct_p, cv::Mat&) {
auto& cancel_struct_ = * cancel_struct_p;
auto num_tasks_to_spawn = -- cancel_struct_.num_tasks_to_spawn;
cancel_struct_.ctx.cancel();
EXPECT_GT(num_tasks_to_spawn, 0)<<"Incorrect Test setup - to small number of tasks to feed the queue \n";
}
};
} }
struct ExceptionOnExecution { struct ExceptionOnExecution {
@ -117,6 +145,41 @@ struct ExceptionOnExecution {
}; };
struct SelfCanceling {
cv::GComputation self_cancel;
SelfCanceling(cancel_struct* cancel_struct_p) : self_cancel([cancel_struct_p]{
cv::GMat in;
cv::GMat out = GCancelationAdHoc::on(in, cancel_struct_p);
return GComputation{in, out};
})
{}
const cv::Size sz{2, 2};
cv::Mat in_mat{sz, CV_8U, cv::Scalar(1)};
cv::Mat out_mat;
cv::GCompiled compile(){
return self_cancel.compile(descr_of(in_mat), compile_args());
}
cv::GComputation& computation(){
return self_cancel;
}
cv::GRunArgs in_args(){
return cv::gin(in_mat);
}
cv::GRunArgsP out_args(){
return cv::gout(out_mat);
}
cv::GCompileArgs compile_args(){
auto pkg = cv::gapi::kernels<GCancelationAdHocImpl>();
return cv::compile_args(pkg);
}
};
template<typename crtp_final_t> template<typename crtp_final_t>
struct crtp_cast { struct crtp_cast {
template<typename crtp_base_t> template<typename crtp_base_t>
@ -150,6 +213,11 @@ struct CallBack: crtp_cast<crtp_final_t> {
this->crtp_cast_(this)->async(callback(), std::forward<Args>(args)...); this->crtp_cast_(this)->async(callback(), std::forward<Args>(args)...);
} }
template<typename... Args >
void start_async(cv::gapi::wip::GAsyncContext& ctx, Args&&... args){
this->crtp_cast_(this)->async(ctx, callback(), std::forward<Args>(args)...);
}
void wait_for_result() void wait_for_result()
{ {
std::unique_lock<std::mutex> lck{mtx}; std::unique_lock<std::mutex> lck{mtx};
@ -186,6 +254,14 @@ struct AsyncCompiled : crtp_cast<crtp_final_t>{
auto gcmpld = this->crtp_cast_(this)->compile(); auto gcmpld = this->crtp_cast_(this)->compile();
return cv::gapi::wip::async(gcmpld, std::forward<Args>(args)...); return cv::gapi::wip::async(gcmpld, std::forward<Args>(args)...);
} }
template<typename... Args>
auto async(cv::gapi::wip::GAsyncContext& ctx, Args&&... args) ->
decltype(cv::gapi::wip::async(std::declval<cv::GCompiled&>(), std::forward<Args>(args)..., std::declval<cv::gapi::wip::GAsyncContext&>()))
{
auto gcmpld = this->crtp_cast_(this)->compile();
return cv::gapi::wip::async(gcmpld, std::forward<Args>(args)..., ctx);
}
}; };
//Test Mixin, hiding details of calling apply (async_apply) on GAPI Computation object //Test Mixin, hiding details of calling apply (async_apply) on GAPI Computation object
@ -193,9 +269,23 @@ template<typename crtp_final_t>
struct AsyncApply : crtp_cast<crtp_final_t> { struct AsyncApply : crtp_cast<crtp_final_t> {
template<typename... Args> template<typename... Args>
auto async(Args&&... args) ->decltype(cv::gapi::wip::async_apply(std::declval<cv::GComputation&>(), std::forward<Args>(args)...)) { auto async(Args&&... args) ->
return cv::gapi::wip::async_apply(this->crtp_cast_(this)->computation(), std::forward<Args>(args)..., this->crtp_cast_(this)->compile_args()); decltype(cv::gapi::wip::async_apply(std::declval<cv::GComputation&>(), std::forward<Args>(args)..., std::declval<cv::GCompileArgs>()))
{
return cv::gapi::wip::async_apply(
this->crtp_cast_(this)->computation(), std::forward<Args>(args)..., this->crtp_cast_(this)->compile_args()
);
} }
template<typename... Args>
auto async(cv::gapi::wip::GAsyncContext& ctx, Args&&... args) ->
decltype(cv::gapi::wip::async_apply(std::declval<cv::GComputation&>(), std::forward<Args>(args)... , std::declval<cv::GCompileArgs>(), std::declval<cv::gapi::wip::GAsyncContext&>()))
{
return cv::gapi::wip::async_apply(
this->crtp_cast_(this)->computation(), std::forward<Args>(args)..., this->crtp_cast_(this)->compile_args(), ctx
);
}
}; };
@ -240,7 +330,7 @@ TYPED_TEST_P(stress, test){
const std::size_t number_of_threads = 4; const std::size_t number_of_threads = 4;
auto thread_body = [&](){ auto thread_body = [&](){
std::vector<TypeParam> requests{request_per_thread}; std::vector<TypeParam> requests(request_per_thread);
for (auto&& r : requests){ for (auto&& r : requests){
r.start_async(r.in_args(), r.out_args()); r.start_async(r.in_args(), r.out_args());
} }
@ -262,13 +352,50 @@ TYPED_TEST_P(stress, test){
} }
REGISTER_TYPED_TEST_CASE_P(stress, test); REGISTER_TYPED_TEST_CASE_P(stress, test);
template<typename case_t>
struct cancel : ::testing::Test{};
TYPED_TEST_CASE_P(cancel);
TYPED_TEST_P(cancel, basic){
constexpr int num_tasks = 100;
cancel_struct cancel_struct_ {num_tasks};
std::vector<TypeParam> requests; requests.reserve(num_tasks);
for (auto i = num_tasks; i>0; i--){
requests.emplace_back(&cancel_struct_);
}
for (auto&& r : requests){
//first request will cancel other on it's execution
r.start_async(cancel_struct_.ctx, r.in_args(), r.out_args());
}
unsigned int canceled = 0 ;
for (auto&& r : requests){
try {
r.wait_for_result();
}catch (cv::gapi::wip::GAsyncCanceled&){
++canceled;
}
}
ASSERT_GT(canceled, 0u);
}
REGISTER_TYPED_TEST_CASE_P(cancel, basic);
//little helpers to match up all combinations of setups //little helpers to match up all combinations of setups
template<typename compute_fixture_t,template <typename> class callback_or_future_t, template <typename> class compiled_or_apply_t> template<typename compute_fixture_t,template <typename> class callback_or_future_t, template <typename> class compiled_or_apply_t>
struct Case struct Case
: compute_fixture_t, : compute_fixture_t,
callback_or_future_t<Case<compute_fixture_t,callback_or_future_t,compiled_or_apply_t>>, callback_or_future_t<Case<compute_fixture_t,callback_or_future_t,compiled_or_apply_t>>,
compiled_or_apply_t <Case<compute_fixture_t,callback_or_future_t,compiled_or_apply_t>> compiled_or_apply_t <Case<compute_fixture_t,callback_or_future_t,compiled_or_apply_t>>
{}; {
template<typename... Args>
Case(Args&&... args) : compute_fixture_t(std::forward<Args>(args)...) { }
Case(Case const & ) = default;
Case(Case && ) = default;
Case() = default;
};
template<typename computation_t> template<typename computation_t>
using cases = ::testing::Types< using cases = ::testing::Types<
@ -282,6 +409,8 @@ INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPIExceptionHandling_, exception, cases<Exce
INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPIStress, stress, cases<SumOfSum2x2>); INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPIStress, stress, cases<SumOfSum2x2>);
INSTANTIATE_TYPED_TEST_CASE_P(AsyncAPICancelation, cancel, cases<SelfCanceling>);
TEST(AsyncAPI, Sample){ TEST(AsyncAPI, Sample){
cv::GComputation self_mul([]{ cv::GComputation self_mul([]{
cv::GMat in; cv::GMat in;
@ -296,4 +425,5 @@ TEST(AsyncAPI, Sample){
auto f = cv::gapi::wip::async_apply(self_mul,cv::gin(in_mat), cv::gout(out)); auto f = cv::gapi::wip::async_apply(self_mul,cv::gin(in_mat), cv::gout(out));
f.wait(); f.wait();
} }
} // namespace opencv_test } // namespace opencv_test

Loading…
Cancel
Save