parent
cccdcac0c8
commit
9c7e0bfd33
3 changed files with 1767 additions and 0 deletions
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,423 @@ |
||||
#include "test_precomp.hpp" |
||||
|
||||
#include <iostream> |
||||
#include <fstream> |
||||
#include <string> |
||||
#include <climits> |
||||
#include <algorithm> |
||||
|
||||
#include <opencv2/ts/gpu_test.hpp> |
||||
#include <opencv2/ts/ts_perf.hpp> |
||||
#include <opencv2/ts/ts.hpp> |
||||
|
||||
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name |
||||
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > > |
||||
|
||||
|
||||
namespace FishEye |
||||
{ |
||||
const static cv::Size imageSize(1280, 800); |
||||
|
||||
const static cv::Matx33d K(558.478087865323, 0, 620.458515360843, |
||||
0, 560.506767351568, 381.939424848348, |
||||
0, 0, 1); |
||||
|
||||
const static cv::Vec4d D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371); |
||||
|
||||
const static cv::Matx33d R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03, |
||||
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02, |
||||
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01); |
||||
|
||||
const static cv::Vec3d T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04); |
||||
} |
||||
|
||||
namespace{ |
||||
std::string combine(const std::string& _item1, const std::string& _item2) |
||||
{ |
||||
std::string item1 = _item1, item2 = _item2; |
||||
std::replace(item1.begin(), item1.end(), '\\', '/'); |
||||
std::replace(item2.begin(), item2.end(), '\\', '/'); |
||||
|
||||
if (item1.empty()) |
||||
return item2; |
||||
|
||||
if (item2.empty()) |
||||
return item1; |
||||
|
||||
char last = item1[item1.size()-1]; |
||||
return item1 + (last != '/' ? "/" : "") + item2; |
||||
} |
||||
|
||||
std::string combine_format(const std::string& item1, const std::string& item2, ...) |
||||
{ |
||||
std::string fmt = combine(item1, item2); |
||||
char buffer[1 << 16]; |
||||
va_list args; |
||||
va_start( args, item2 ); |
||||
vsprintf( buffer, fmt.c_str(), args ); |
||||
va_end( args ); |
||||
return std::string(buffer); |
||||
} |
||||
|
||||
void readPoins(std::vector<std::vector<cv::Point3d> >& objectPoints, |
||||
std::vector<std::vector<cv::Point2d> >& imagePoints, |
||||
const std::string& path, const int n_images, const int n_points) |
||||
{ |
||||
objectPoints.resize(n_images); |
||||
imagePoints.resize(n_images); |
||||
|
||||
std::vector<cv::Point2d> image(n_points); |
||||
std::vector<cv::Point3d> object(n_points); |
||||
|
||||
std::ifstream ipStream; |
||||
std::ifstream opStream; |
||||
|
||||
for (int image_idx = 0; image_idx < n_images; image_idx++) |
||||
{ |
||||
std::stringstream ss; |
||||
ss << image_idx; |
||||
std::string idxStr = ss.str(); |
||||
|
||||
ipStream.open(combine(path, std::string(std::string("x_") + idxStr + std::string(".csv"))).c_str(), std::ifstream::in); |
||||
opStream.open(combine(path, std::string(std::string("X_") + idxStr + std::string(".csv"))).c_str(), std::ifstream::in); |
||||
CV_Assert(ipStream.is_open() && opStream.is_open()); |
||||
|
||||
for (int point_idx = 0; point_idx < n_points; point_idx++) |
||||
{ |
||||
double x, y, z; |
||||
char delim; |
||||
ipStream >> x >> delim >> y; |
||||
image[point_idx] = cv::Point2d(x, y); |
||||
opStream >> x >> delim >> y >> delim >> z; |
||||
object[point_idx] = cv::Point3d(x, y, z); |
||||
} |
||||
ipStream.close(); |
||||
opStream.close(); |
||||
|
||||
imagePoints[image_idx] = image; |
||||
objectPoints[image_idx] = object; |
||||
} |
||||
} |
||||
|
||||
void readExtrinsics(const std::string& file, cv::OutputArray _R, cv::OutputArray _T, cv::OutputArray _R1, cv::OutputArray _R2, |
||||
cv::OutputArray _P1, cv::OutputArray _P2, cv::OutputArray _Q) |
||||
{ |
||||
cv::FileStorage fs(file, cv::FileStorage::READ); |
||||
CV_Assert(fs.isOpened()); |
||||
|
||||
cv::Mat R, T, R1, R2, P1, P2, Q; |
||||
fs["R"] >> R; fs["T"] >> T; fs["R1"] >> R1; fs["R2"] >> R2; fs["P1"] >> P1; fs["P2"] >> P2; fs["Q"] >> Q; |
||||
if (_R.needed()) R.copyTo(_R); if(_T.needed()) T.copyTo(_T); if (_R1.needed()) R1.copyTo(_R1); if (_R2.needed()) R2.copyTo(_R2); |
||||
if(_P1.needed()) P1.copyTo(_P1); if(_P2.needed()) P2.copyTo(_P2); if(_Q.needed()) Q.copyTo(_Q); |
||||
} |
||||
|
||||
cv::Mat mergeRectification(const cv::Mat& l, const cv::Mat& r, double scale) |
||||
{ |
||||
CV_Assert(l.type() == r.type() && l.size() == r.size()); |
||||
cv::Mat merged(l.rows, l.cols * 2, l.type()); |
||||
cv::Mat lpart = merged.colRange(0, l.cols); |
||||
cv::Mat rpart = merged.colRange(l.cols, merged.cols); |
||||
l.copyTo(lpart); |
||||
r.copyTo(rpart); |
||||
|
||||
for(int i = 0; i < l.rows; i+=20) |
||||
cv::line(merged, cv::Point(0, i), cv::Point(merged.cols, i), CV_RGB(0, 255, 0)); |
||||
|
||||
return merged; |
||||
} |
||||
|
||||
} |
||||
|
||||
|
||||
|
||||
/// Change this parameter via CMake: cmake -DDATASETS_REPOSITORY_FOLDER=<path>
|
||||
//const static std::string datasets_repository_path = "DATASETS_REPOSITORY_FOLDER";
|
||||
const static std::string datasets_repository_path = "/home/krylov/data"; |
||||
|
||||
TEST(FisheyeTest, projectPoints) |
||||
{ |
||||
double cols = FishEye::imageSize.width, |
||||
rows = FishEye::imageSize.height; |
||||
|
||||
const int N = 20; |
||||
cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2; |
||||
undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3)); |
||||
cv::Vec2d* pts = distorted0.ptr<cv::Vec2d>(); |
||||
|
||||
cv::Vec2d c(FishEye::K(0, 2), FishEye::K(1, 2)); |
||||
for(int y = 0, k = 0; y < N; ++y) |
||||
for(int x = 0; x < N; ++x) |
||||
{ |
||||
cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f)); |
||||
pts[k++] = (point - c) * 0.85 + c; |
||||
} |
||||
|
||||
cv::Fisheye::undistortPoints(distorted0, undist1, FishEye::K, FishEye::D); |
||||
|
||||
cv::Vec2d* u1 = undist1.ptr<cv::Vec2d>(); |
||||
cv::Vec3d* u2 = undist2.ptr<cv::Vec3d>(); |
||||
for(int i = 0; i < (int)distorted0.total(); ++i) |
||||
u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0); |
||||
|
||||
cv::Fisheye::distortPoints(undist1, distorted1, FishEye::K, FishEye::D); |
||||
cv::Fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), FishEye::K, FishEye::D); |
||||
|
||||
EXPECT_MAT_NEAR(distorted0, distorted1, 1e-5); |
||||
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-5); |
||||
} |
||||
|
||||
TEST(FisheyeTest, undistortImage) |
||||
{ |
||||
cv::Matx33d K = FishEye::K; |
||||
cv::Mat D = cv::Mat(FishEye::D); |
||||
std::string file = combine(datasets_repository_path, "image000001.png"); |
||||
|
||||
cv::Matx33d newK = K; |
||||
cv::Mat distorted = cv::imread(file), undistorted; |
||||
|
||||
{ |
||||
newK(0, 0) = 100; |
||||
newK(1, 1) = 100; |
||||
cv::Fisheye::undistortImage(distorted, undistorted, K, D, newK); |
||||
cv::Mat correct = cv::imread(combine(datasets_repository_path, "test_undistortImage/new_f_100.png")); |
||||
if (correct.empty()) |
||||
CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/new_f_100.png"), undistorted)); |
||||
else |
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-15); |
||||
} |
||||
{ |
||||
double balance = 1.0; |
||||
cv::Fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, distorted.size(), cv::noArray(), newK, balance); |
||||
cv::Fisheye::undistortImage(distorted, undistorted, K, D, newK); |
||||
cv::Mat correct = cv::imread(combine(datasets_repository_path, "test_undistortImage/balance_1.0.png")); |
||||
if (correct.empty()) |
||||
CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/balance_1.0.png"), undistorted)); |
||||
else |
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-15); |
||||
} |
||||
|
||||
{ |
||||
double balance = 0.0; |
||||
cv::Fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, distorted.size(), cv::noArray(), newK, balance); |
||||
cv::Fisheye::undistortImage(distorted, undistorted, K, D, newK); |
||||
cv::Mat correct = cv::imread(combine(datasets_repository_path, "test_undistortImage/balance_0.0.png")); |
||||
if (correct.empty()) |
||||
CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/balance_0.0.png"), undistorted)); |
||||
else |
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-15); |
||||
} |
||||
|
||||
cv::waitKey(); |
||||
} |
||||
|
||||
TEST(FisheyeTest, jacobians) |
||||
{ |
||||
int n = 10; |
||||
cv::Mat X(1, n, CV_32FC4); |
||||
cv::Mat om(3, 1, CV_64F), T(3, 1, CV_64F); |
||||
cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F); |
||||
cv::Mat k(4, 1, CV_64F); |
||||
double alpha; |
||||
|
||||
cv::RNG& r = cv::theRNG(); |
||||
|
||||
r.fill(X, cv::RNG::NORMAL, 0, 1); |
||||
X = cv::abs(X) * 10; |
||||
|
||||
r.fill(om, cv::RNG::NORMAL, 0, 1); |
||||
om = cv::abs(om); |
||||
|
||||
r.fill(T, cv::RNG::NORMAL, 0, 1); |
||||
T = cv::abs(T); T.at<double>(2) = 4; T *= 10; |
||||
|
||||
r.fill(f, cv::RNG::NORMAL, 0, 1); |
||||
f = cv::abs(f) * 1000; |
||||
|
||||
r.fill(c, cv::RNG::NORMAL, 0, 1); |
||||
c = cv::abs(c) * 1000; |
||||
|
||||
r.fill(k, cv::RNG::NORMAL, 0, 1); |
||||
k*= 0.5; |
||||
|
||||
alpha = 0.01*r.gaussian(1); |
||||
|
||||
|
||||
CV_Assert(!"/////////"); |
||||
} |
||||
|
||||
TEST(FisheyeTest, Calibration) |
||||
{ |
||||
const int n_images = 34; |
||||
const int n_points = 48; |
||||
|
||||
cv::Size imageSize = cv::Size(1280, 800); |
||||
std::vector<std::vector<cv::Point2d> > imagePoints; |
||||
std::vector<std::vector<cv::Point3d> > objectPoints; |
||||
|
||||
readPoins(objectPoints, imagePoints, combine(datasets_repository_path, "calib-3_stereo_from_JY/left"), n_images, n_points); |
||||
|
||||
int flag = 0; |
||||
flag |= cv::Fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
||||
flag |= cv::Fisheye::CALIB_CHECK_COND; |
||||
flag |= cv::Fisheye::CALIB_FIX_SKEW; |
||||
|
||||
cv::Matx33d K; |
||||
cv::Vec4d D; |
||||
|
||||
cv::Fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D, |
||||
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); |
||||
|
||||
EXPECT_MAT_NEAR(K, FishEye::K, 1e-11); |
||||
EXPECT_MAT_NEAR(D, FishEye::D, 1e-12); |
||||
} |
||||
|
||||
TEST(FisheyeTest, Homography) |
||||
{ |
||||
const int n_images = 1; |
||||
const int n_points = 48; |
||||
|
||||
cv::Size imageSize = cv::Size(1280, 800); |
||||
std::vector<std::vector<cv::Point2d> > imagePoints; |
||||
std::vector<std::vector<cv::Point3d> > objectPoints; |
||||
|
||||
readPoins(objectPoints, imagePoints, combine(datasets_repository_path, "calib-3_stereo_from_JY/left"), n_images, n_points); |
||||
cv::internal::IntrinsicParams param; |
||||
param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI), |
||||
cv::Vec2d(imageSize.width / 2.0 - 0.5, imageSize.height / 2.0 - 0.5)); |
||||
|
||||
cv::Mat _imagePoints (imagePoints[0]); |
||||
cv::Mat _objectPoints(objectPoints[0]); |
||||
|
||||
cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t(); |
||||
_objectPoints = _objectPoints.reshape(1).t(); |
||||
cv::Mat objectPointsMean, covObjectPoints; |
||||
|
||||
int Np = imagePointsNormalized.cols; |
||||
cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, CV_COVAR_NORMAL | CV_COVAR_COLS); |
||||
cv::SVD svd(covObjectPoints); |
||||
cv::Mat R(svd.vt); |
||||
|
||||
if (cv::norm(R(cv::Rect(2, 0, 1, 2))) < 1e-6) |
||||
R = cv::Mat::eye(3,3, CV_64FC1); |
||||
if (cv::determinant(R) < 0) |
||||
R = -R; |
||||
|
||||
cv::Mat T = -R * objectPointsMean; |
||||
cv::Mat X_new = R * _objectPoints + T * cv::Mat::ones(1, Np, CV_64FC1); |
||||
cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2)); |
||||
|
||||
cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1); |
||||
X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2)); |
||||
cv::Mat mrep = H * M; |
||||
|
||||
cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep); |
||||
|
||||
cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t(); |
||||
|
||||
cv::Vec2d std_err; |
||||
cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err); |
||||
std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1)); |
||||
|
||||
cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901); |
||||
EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-16); |
||||
} |
||||
|
||||
TEST(TestFisheye, EtimateUncertainties) |
||||
{ |
||||
const int n_images = 34; |
||||
const int n_points = 48; |
||||
|
||||
cv::Size imageSize = cv::Size(1280, 800); |
||||
std::vector<std::vector<cv::Point2d> > imagePoints; |
||||
std::vector<std::vector<cv::Point3d> > objectPoints; |
||||
|
||||
readPoins(objectPoints, imagePoints, combine(datasets_repository_path, "calib-3_stereo_from_JY/left"), n_images, n_points); |
||||
|
||||
int flag = 0; |
||||
flag |= cv::Fisheye::CALIB_RECOMPUTE_EXTRINSIC; |
||||
flag |= cv::Fisheye::CALIB_CHECK_COND; |
||||
flag |= cv::Fisheye::CALIB_FIX_SKEW; |
||||
|
||||
cv::Matx33d K; |
||||
cv::Vec4d D; |
||||
std::vector<cv::Vec3d> rvec; |
||||
std::vector<cv::Vec3d> tvec; |
||||
|
||||
cv::Fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D, |
||||
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); |
||||
|
||||
cv::internal::IntrinsicParams param, errors; |
||||
cv::Vec2d err_std; |
||||
double thresh_cond = 1e6; |
||||
int check_cond = 1; |
||||
param.Init(cv::Vec2d(K(0,0), K(1,1)), cv::Vec2d(K(0,2), K(1, 2)), D); |
||||
param.isEstimate = std::vector<int>(9, 1); |
||||
param.isEstimate[4] = 0; |
||||
|
||||
errors.isEstimate = param.isEstimate; |
||||
|
||||
double rms; |
||||
|
||||
cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec, |
||||
errors, err_std, thresh_cond, check_cond, rms); |
||||
|
||||
EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046, 1.31565641071524), 1e-14); |
||||
EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-15); |
||||
EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-15); |
||||
EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-15); |
||||
CV_Assert(abs(rms - 0.263782587133546) < 1e-15); |
||||
CV_Assert(errors.alpha == 0); |
||||
} |
||||
|
||||
TEST(FisheyeTest, rectify) |
||||
{ |
||||
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY"); |
||||
|
||||
cv::Size calibration_size = FishEye::imageSize, requested_size = calibration_size; |
||||
cv::Matx33d K1 = FishEye::K, K2 = K1; |
||||
cv::Mat D1 = cv::Mat(FishEye::D), D2 = D1; |
||||
|
||||
cv::Vec3d T = FishEye::T; |
||||
cv::Matx33d R = FishEye::R; |
||||
|
||||
double balance = 0.0, fov_scale = 1.1; |
||||
cv::Mat R1, R2, P1, P2, Q; |
||||
cv::Fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, R, T, R1, R2, P1, P2, Q, |
||||
cv::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale); |
||||
|
||||
cv::Mat lmapx, lmapy, rmapx, rmapy; |
||||
//rewrite for fisheye
|
||||
cv::Fisheye::initUndistortRectifyMap(K1, D1, R1, P1, requested_size, CV_32F, lmapx, lmapy); |
||||
cv::Fisheye::initUndistortRectifyMap(K2, D2, R2, P2, requested_size, CV_32F, rmapx, rmapy); |
||||
|
||||
cv::Mat l, r, lundist, rundist; |
||||
cv::VideoCapture lcap(combine(folder, "left/stereo_pair_%03d.jpg")), |
||||
rcap(combine(folder, "right/stereo_pair_%03d.jpg")); |
||||
|
||||
for(int i = 0;; ++i) |
||||
{ |
||||
lcap >> l; rcap >> r; |
||||
if (l.empty() || r.empty()) |
||||
break; |
||||
|
||||
int ndisp = 128; |
||||
cv::rectangle(l, cv::Rect(255, 0, 829, l.rows-1), CV_RGB(255, 0, 0)); |
||||
cv::rectangle(r, cv::Rect(255, 0, 829, l.rows-1), CV_RGB(255, 0, 0)); |
||||
cv::rectangle(r, cv::Rect(255-ndisp, 0, 829+ndisp ,l.rows-1), CV_RGB(255, 0, 0)); |
||||
cv::remap(l, lundist, lmapx, lmapy, cv::INTER_LINEAR); |
||||
cv::remap(r, rundist, rmapx, rmapy, cv::INTER_LINEAR); |
||||
|
||||
cv::Mat rectification = mergeRectification(lundist, rundist, 0.75); |
||||
|
||||
cv::Mat correct = cv::imread(combine_format(folder, "test_rectify/rectification_AB_%03d.png", i)); |
||||
if (correct.empty()) |
||||
cv::imwrite(combine_format(folder, "test_rectify/rectification_AB_%03d.png", i), rectification); |
||||
else |
||||
EXPECT_MAT_NEAR(correct, rectification, 1e-15); |
||||
} |
||||
} |
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in new issue