Merge pull request #14916 from terfendail:wsignmask_deprecated

* Avoid using v_signmask universal intrinsic and mark it as deprecated

* Renamed v_find_negative to v_scan_forward
pull/14958/head
Vitaly Tuzov 5 years ago committed by Alexander Alekhin
parent 3e4a195b61
commit 9befb7a1d7
  1. 4
      modules/calib3d/src/stereobm.cpp
  2. 4
      modules/calib3d/src/stereosgbm.cpp
  3. 54
      modules/core/include/opencv2/core/hal/intrin.hpp
  4. 11
      modules/core/include/opencv2/core/hal/intrin_avx.hpp
  5. 20
      modules/core/include/opencv2/core/hal/intrin_avx512.hpp
  6. 18
      modules/core/include/opencv2/core/hal/intrin_cpp.hpp
  7. 17
      modules/core/include/opencv2/core/hal/intrin_neon.hpp
  8. 11
      modules/core/include/opencv2/core/hal/intrin_sse.hpp
  9. 11
      modules/core/include/opencv2/core/hal/intrin_vsx.hpp
  10. 35
      modules/features2d/src/fast.cpp
  11. 290
      modules/imgproc/src/canny.cpp
  12. 46
      modules/imgproc/src/contours.cpp
  13. 112
      modules/imgproc/src/hough.cpp

@ -534,12 +534,12 @@ static void findStereoCorrespondenceBM_SIMD( const Mat& left, const Mat& right,
v_expand(sad8, sad4_l, sad4_h);
mask4 = thresh4 > sad4_l;
mask4 = mask4 & ((d1 > d4) | (d4 > d2));
if( v_signmask(mask4) )
if( v_check_any(mask4) )
break;
d4 += dd_4;
mask4 = thresh4 > sad4_h;
mask4 = mask4 & ((d1 > d4) | (d4 > d2));
if( v_signmask(mask4) )
if( v_check_any(mask4) )
break;
d4 += dd_4;
}

@ -2013,14 +2013,14 @@ void SGBM3WayMainLoop::operator () (const Range& range) const
mask = cost1 < thresh_reg;
mask = mask & ( (cur_d<d1) | (cur_d>d2) );
if( v_signmask(mask) )
if( v_check_any(mask) )
break;
cur_d = cur_d+eight_reg;
mask = cost2 < thresh_reg;
mask = mask & ( (cur_d<d1) | (cur_d>d2) );
if( v_signmask(mask) )
if( v_check_any(mask) )
break;
cur_d = cur_d+eight_reg;

@ -55,6 +55,34 @@
#define OPENCV_HAL_NOP(a) (a)
#define OPENCV_HAL_1ST(a, b) (a)
namespace {
inline unsigned int trailingZeros32(unsigned int value) {
#if defined(_MSC_VER)
#if (_MSC_VER < 1700) || defined(_M_ARM)
unsigned long index = 0;
_BitScanForward(&index, value);
return (unsigned int)index;
#elif defined(__clang__)
// clang-cl doesn't export _tzcnt_u32 for non BMI systems
return value ? __builtin_ctz(value) : 32;
#else
return _tzcnt_u32(value);
#endif
#elif defined(__GNUC__) || defined(__GNUG__)
return __builtin_ctz(value);
#elif defined(__ICC) || defined(__INTEL_COMPILER)
return _bit_scan_forward(value);
#elif defined(__clang__)
return llvm.cttz.i32(value, true);
#else
static const int MultiplyDeBruijnBitPosition[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 };
return MultiplyDeBruijnBitPosition[((uint32_t)((value & -value) * 0x077CB531U)) >> 27];
#endif
}
}
// unlike HAL API, which is in cv::hal,
// we put intrinsics into cv namespace to make its
// access from within opencv code more accessible
@ -419,32 +447,6 @@ namespace CV__SIMD_NAMESPACE {
using namespace CV__SIMD_NAMESPACE;
#endif
inline unsigned int trailingZeros32(unsigned int value) {
#if defined(_MSC_VER)
#if (_MSC_VER < 1700) || defined(_M_ARM)
unsigned long index = 0;
_BitScanForward(&index, value);
return (unsigned int)index;
#elif defined(__clang__)
// clang-cl doesn't export _tzcnt_u32 for non BMI systems
return value ? __builtin_ctz(value) : 32;
#else
return _tzcnt_u32(value);
#endif
#elif defined(__GNUC__) || defined(__GNUG__)
return __builtin_ctz(value);
#elif defined(__ICC) || defined(__INTEL_COMPILER)
return _bit_scan_forward(value);
#elif defined(__clang__)
return llvm.cttz.i32(value, true);
#else
static const int MultiplyDeBruijnBitPosition[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 };
return MultiplyDeBruijnBitPosition[((uint32_t)((value & -value) * 0x077CB531U)) >> 27];
#endif
}
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
#endif

@ -1244,6 +1244,17 @@ inline int v_signmask(const v_float32x8& a)
inline int v_signmask(const v_float64x4& a)
{ return _mm256_movemask_pd(a.val); }
inline int v_scan_forward(const v_int8x32& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))); }
inline int v_scan_forward(const v_uint8x32& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))); }
inline int v_scan_forward(const v_int16x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 2; }
inline int v_scan_forward(const v_uint16x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 2; }
inline int v_scan_forward(const v_int32x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_uint32x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_float32x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_int64x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
inline int v_scan_forward(const v_uint64x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
inline int v_scan_forward(const v_float64x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
/** Checks **/
#define OPENCV_HAL_IMPL_AVX_CHECK(_Tpvec, and_op, allmask) \
inline bool v_check_all(const _Tpvec& a) \

@ -2719,7 +2719,7 @@ OPENCV_HAL_IMPL_AVX512_LOADSTORE_INTERLEAVE(v_float64x8, double, f64, v_uint64x8
////////// Mask and checks /////////
/** Mask **/
inline int64 v_signmask(const v_int8x64& a) { return (int64)_mm512_cmp_epi8_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline int64 v_signmask(const v_int8x64& a) { return (int64)_mm512_movepi8_mask(a.val); }
inline int v_signmask(const v_int16x32& a) { return (int)_mm512_cmp_epi16_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline int v_signmask(const v_int32x16& a) { return (int)_mm512_cmp_epi32_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline int v_signmask(const v_int64x8& a) { return (int)_mm512_cmp_epi64_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
@ -2733,7 +2733,7 @@ inline int v_signmask(const v_float64x8& a) { return v_signmask(v_reinterpret_as
/** Checks **/
inline bool v_check_all(const v_int8x64& a) { return !(bool)_mm512_cmp_epi8_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_NLT); }
inline bool v_check_any(const v_int8x64& a) { return (bool)_mm512_cmp_epi8_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline bool v_check_any(const v_int8x64& a) { return (bool)_mm512_movepi8_mask(a.val); }
inline bool v_check_all(const v_int16x32& a) { return !(bool)_mm512_cmp_epi16_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_NLT); }
inline bool v_check_any(const v_int16x32& a) { return (bool)_mm512_cmp_epi16_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline bool v_check_all(const v_int32x16& a) { return !(bool)_mm512_cmp_epi32_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_NLT); }
@ -2754,6 +2754,22 @@ inline bool v_check_any(const v_uint16x32& a) { return v_check_any(v_reinterpret
inline bool v_check_any(const v_uint32x16& a) { return v_check_any(v_reinterpret_as_s32(a)); }
inline bool v_check_any(const v_uint64x8& a) { return v_check_any(v_reinterpret_as_s64(a)); }
inline int v_scan_forward(const v_int8x64& a)
{
int64 mask = _mm512_movepi8_mask(a.val);
int mask32 = (int)mask;
return mask != 0 ? mask32 != 0 ? trailingZeros32(mask32) : 32 + trailingZeros32((int)(mask >> 32)) : 0;
}
inline int v_scan_forward(const v_uint8x64& a) { return v_scan_forward(v_reinterpret_as_s8(a)); }
inline int v_scan_forward(const v_int16x32& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))); }
inline int v_scan_forward(const v_uint16x32& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))); }
inline int v_scan_forward(const v_int32x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 2; }
inline int v_scan_forward(const v_uint32x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 2; }
inline int v_scan_forward(const v_float32x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 2; }
inline int v_scan_forward(const v_int64x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 4; }
inline int v_scan_forward(const v_uint64x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 4; }
inline int v_scan_forward(const v_float64x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 4; }
inline void v512_cleanup() { _mm256_zeroall(); }
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END

@ -1072,6 +1072,7 @@ template<typename _Tp, int n> inline typename V_TypeTraits< typename V_TypeTrait
}
/** @brief Get negative values mask
@deprecated v_signmask depends on a lane count heavily and therefore isn't universal enough
Returned value is a bit mask with bits set to 1 on places corresponding to negative packed values indexes.
Example:
@ -1088,6 +1089,23 @@ template<typename _Tp, int n> inline int v_signmask(const v_reg<_Tp, n>& a)
return mask;
}
/** @brief Get first negative lane index
Returned value is an index of first negative lane (undefined for input of all positive values)
Example:
@code{.cpp}
v_int32x4 r; // set to {0, 0, -1, -1}
int idx = v_heading_zeros(r); // idx = 2
@endcode
*/
template <typename _Tp, int n> inline int v_scan_forward(const v_reg<_Tp, n>& a)
{
for (int i = 0; i < n; i++)
if(V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) < 0)
return i;
return 0;
}
/** @brief Check if all packed values are less than zero
Unsigned values will be casted to signed: `uchar 254 => char -2`.

@ -1096,17 +1096,32 @@ inline int v_signmask(const v_int32x4& a)
{ return v_signmask(v_reinterpret_as_u32(a)); }
inline int v_signmask(const v_float32x4& a)
{ return v_signmask(v_reinterpret_as_u32(a)); }
#if CV_SIMD128_64F
inline int v_signmask(const v_uint64x2& a)
{
int64x1_t m0 = vdup_n_s64(0);
uint64x2_t v0 = vshlq_u64(vshrq_n_u64(a.val, 63), vcombine_s64(m0, m0));
return (int)vgetq_lane_u64(v0, 0) + ((int)vgetq_lane_u64(v0, 1) << 1);
}
inline int v_signmask(const v_int64x2& a)
{ return v_signmask(v_reinterpret_as_u64(a)); }
#if CV_SIMD128_64F
inline int v_signmask(const v_float64x2& a)
{ return v_signmask(v_reinterpret_as_u64(a)); }
#endif
inline int v_scan_forward(const v_int8x16& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint8x16& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int16x8& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint16x8& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_float32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int64x2& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint64x2& a) { return trailingZeros32(v_signmask(a)); }
#if CV_SIMD128_64F
inline int v_scan_forward(const v_float64x2& a) { return trailingZeros32(v_signmask(a)); }
#endif
#define OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(_Tpvec, suffix, shift) \
inline bool v_check_all(const v_##_Tpvec& a) \
{ \

@ -1617,6 +1617,17 @@ OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_int32x4, epi8, v_packq_epi32, OPENCV_HAL_AND,
OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_float32x4, ps, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 15, 15)
OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_float64x2, pd, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 3, 3)
inline int v_scan_forward(const v_int8x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))); }
inline int v_scan_forward(const v_uint8x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))); }
inline int v_scan_forward(const v_int16x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 2; }
inline int v_scan_forward(const v_uint16x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 2; }
inline int v_scan_forward(const v_int32x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_uint32x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_float32x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_int64x2& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
inline int v_scan_forward(const v_uint64x2& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
inline int v_scan_forward(const v_float64x2& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
#if CV_SSE4_1
#define OPENCV_HAL_IMPL_SSE_SELECT(_Tpvec, cast_ret, cast, suffix) \
inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \

@ -891,6 +891,17 @@ inline int v_signmask(const v_uint64x2& a)
inline int v_signmask(const v_float64x2& a)
{ return v_signmask(v_reinterpret_as_s64(a)); }
inline int v_scan_forward(const v_int8x16& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint8x16& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int16x8& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint16x8& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_float32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int64x2& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint64x2& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_float64x2& a) { return trailingZeros32(v_signmask(a)); }
template<typename _Tpvec>
inline bool v_check_all(const _Tpvec& a)
{ return vec_all_lt(a.val, _Tpvec().val); }

@ -132,10 +132,9 @@ void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bo
m1 = m1 | ((x3 < v1) & (x0 < v1));
m0 = m0 | m1;
int mask = v_signmask(m0);
if( mask == 0 )
if( !v_check_any(m0) )
continue;
if( (mask & 255) == 0 )
if( !v_check_any(v_combine_low(m0, m0)) )
{
j -= 8;
ptr -= 8;
@ -159,16 +158,36 @@ void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bo
max1 = v_max(max1, v_reinterpret_as_u8(c1));
}
max0 = v_max(max0, max1);
int m = v_signmask(K16 < max0);
max0 = K16 < v_max(max0, max1);
int m = -v_reduce_sum(v_reinterpret_as_s8(max0));
uchar mflag[16];
v_store(mflag, max0);
for( k = 0; m > 0 && k < 16; k++, m >>= 1 )
for( k = 0; m > 0 && k < 16; k++ )
{
if(m & 1)
if(mflag[k])
{
--m;
cornerpos[ncorners++] = j+k;
if(nonmax_suppression)
curr[j+k] = (uchar)cornerScore<patternSize>(ptr+k, pixel, threshold);
{
short d[25];
for (int _k = 0; _k < 25; _k++)
d[_k] = (short)(ptr[k] - ptr[k + pixel[_k]]);
v_int16x8 a0, b0, a1, b1;
a0 = b0 = a1 = b1 = v_load(d + 8);
for(int shift = 0; shift < 8; ++shift)
{
v_int16x8 v_nms = v_load(d + shift);
a0 = v_min(a0, v_nms);
b0 = v_max(b0, v_nms);
v_nms = v_load(d + 9 + shift);
a1 = v_min(a1, v_nms);
b1 = v_max(b1, v_nms);
}
curr[j + k] = (uchar)(v_reduce_max(v_max(v_max(a0, a1), v_setzero_s16() - v_min(b0, b1))) - 1);
}
}
}
}

@ -47,10 +47,6 @@
#include "opencv2/core/openvx/ovx_defs.hpp"
#if CV_SIMD128
#define CV_MALLOC_SIMD128 16
#endif
namespace cv
{
@ -296,18 +292,11 @@ static bool ocl_Canny(InputArray _src, const UMat& dx_, const UMat& dy_, OutputA
#define CANNY_PUSH(map, stack) *map = 2, stack.push_back(map)
#define CANNY_CHECK_SIMD(m, high, map, stack) \
if (m > high) \
CANNY_PUSH(map, stack); \
else \
*map = 0
#define CANNY_CHECK(m, high, map, stack) \
if (m > high) \
CANNY_PUSH(map, stack); \
else \
*map = 0; \
continue
*map = 0
class parallelCanny : public ParallelLoopBody
{
@ -317,9 +306,14 @@ public:
src(_src), src2(_src), map(_map), _borderPeaksParallel(borderPeaksParallel),
low(_low), high(_high), aperture_size(_aperture_size), L2gradient(_L2gradient)
{
#if CV_SIMD128
#if CV_SIMD
for(int i = 0; i < v_int8::nlanes; ++i)
{
smask[i] = 0;
smask[i + v_int8::nlanes] = (schar)-1;
}
if (true)
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_MALLOC_SIMD128 + 1), CV_MALLOC_SIMD128), CV_8UC1);
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_SIMD_WIDTH + 1), CV_SIMD_WIDTH), CV_8UC1);
else
#endif
_map.create(src.rows + 2, src.cols + 2, CV_8UC1);
@ -336,9 +330,14 @@ public:
src(_dx), src2(_dy), map(_map), _borderPeaksParallel(borderPeaksParallel),
low(_low), high(_high), aperture_size(0), L2gradient(_L2gradient)
{
#if CV_SIMD128
#if CV_SIMD
for(int i = 0; i < v_int8::nlanes; ++i)
{
smask[i] = 0;
smask[i + v_int8::nlanes] = (schar)-1;
}
if (true)
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_MALLOC_SIMD128 + 1), CV_MALLOC_SIMD128), CV_8UC1);
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_SIMD_WIDTH + 1), CV_SIMD_WIDTH), CV_8UC1);
else
#endif
_map.create(src.rows + 2, src.cols + 2, CV_8UC1);
@ -397,11 +396,11 @@ public:
}
// _mag_p: previous row, _mag_a: actual row, _mag_n: next row
#if CV_SIMD128
AutoBuffer<int> buffer(3 * (mapstep * cn + CV_MALLOC_SIMD128));
_mag_p = alignPtr(buffer.data() + 1, CV_MALLOC_SIMD128);
_mag_a = alignPtr(_mag_p + mapstep * cn, CV_MALLOC_SIMD128);
_mag_n = alignPtr(_mag_a + mapstep * cn, CV_MALLOC_SIMD128);
#if CV_SIMD
AutoBuffer<int> buffer(3 * (mapstep * cn + CV_SIMD_WIDTH));
_mag_p = alignPtr(buffer.data() + 1, CV_SIMD_WIDTH);
_mag_a = alignPtr(_mag_p + mapstep * cn, CV_SIMD_WIDTH);
_mag_n = alignPtr(_mag_a + mapstep * cn, CV_SIMD_WIDTH);
#else
AutoBuffer<int> buffer(3 * (mapstep * cn));
_mag_p = buffer.data() + 1;
@ -437,21 +436,19 @@ public:
if (L2gradient)
{
int j = 0, width = src.cols * cn;
#if CV_SIMD128
#if CV_SIMD
for ( ; j <= width - v_int16::nlanes; j += v_int16::nlanes)
{
for ( ; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short*)(_dx + j));
v_int16x8 v_dy = v_load((const short*)(_dy + j));
v_int16 v_dx = vx_load((const short*)(_dx + j));
v_int16 v_dy = vx_load((const short*)(_dy + j));
v_int32x4 v_dxp_low, v_dxp_high;
v_int32x4 v_dyp_low, v_dyp_high;
v_expand(v_dx, v_dxp_low, v_dxp_high);
v_expand(v_dy, v_dyp_low, v_dyp_high);
v_int32 v_dxp_low, v_dxp_high;
v_int32 v_dyp_low, v_dyp_high;
v_expand(v_dx, v_dxp_low, v_dxp_high);
v_expand(v_dy, v_dyp_low, v_dyp_high);
v_store_aligned((int *)(_mag_n + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low);
v_store_aligned((int *)(_mag_n + j + 4), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high);
}
v_store_aligned((int *)(_mag_n + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low);
v_store_aligned((int *)(_mag_n + j + v_int32::nlanes), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high);
}
#endif
for ( ; j < width; ++j)
@ -460,23 +457,21 @@ public:
else
{
int j = 0, width = src.cols * cn;
#if CV_SIMD128
#if CV_SIMD
for(; j <= width - v_int16::nlanes; j += v_int16::nlanes)
{
for(; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short *)(_dx + j));
v_int16x8 v_dy = v_load((const short *)(_dy + j));
v_int16 v_dx = vx_load((const short *)(_dx + j));
v_int16 v_dy = vx_load((const short *)(_dy + j));
v_dx = v_reinterpret_as_s16(v_abs(v_dx));
v_dy = v_reinterpret_as_s16(v_abs(v_dy));
v_dx = v_reinterpret_as_s16(v_abs(v_dx));
v_dy = v_reinterpret_as_s16(v_abs(v_dy));
v_int32x4 v_dx_ml, v_dy_ml, v_dx_mh, v_dy_mh;
v_expand(v_dx, v_dx_ml, v_dx_mh);
v_expand(v_dy, v_dy_ml, v_dy_mh);
v_int32 v_dx_ml, v_dy_ml, v_dx_mh, v_dy_mh;
v_expand(v_dx, v_dx_ml, v_dx_mh);
v_expand(v_dy, v_dy_ml, v_dy_mh);
v_store_aligned((int *)(_mag_n + j), v_dx_ml + v_dy_ml);
v_store_aligned((int *)(_mag_n + j + 4), v_dx_mh + v_dy_mh);
}
v_store_aligned((int *)(_mag_n + j), v_dx_ml + v_dy_ml);
v_store_aligned((int *)(_mag_n + j + v_int32::nlanes), v_dx_mh + v_dy_mh);
}
#endif
for ( ; j < width; ++j)
@ -520,9 +515,9 @@ public:
// From here actual src row is (i - 1)
// Set left and right border to 1
#if CV_SIMD128
#if CV_SIMD
if (true)
_pmap = map.ptr<uchar>(i) + CV_MALLOC_SIMD128;
_pmap = map.ptr<uchar>(i) + CV_SIMD_WIDTH;
else
#endif
_pmap = map.ptr<uchar>(i) + 1;
@ -542,166 +537,59 @@ public:
const int TG22 = 13573;
int j = 0;
#if CV_SIMD128
#if CV_SIMD
{
const v_int32x4 v_low = v_setall_s32(low);
const v_int8x16 v_one = v_setall_s8(1);
const v_int32 v_low = vx_setall_s32(low);
const v_int8 v_one = vx_setall_s8(1);
for (; j <= src.cols - 32; j += 32)
for (; j <= src.cols - v_int8::nlanes; j += v_int8::nlanes)
{
v_int32x4 v_m1 = v_load_aligned((const int*)(_mag_a + j));
v_int32x4 v_m2 = v_load_aligned((const int*)(_mag_a + j + 4));
v_int32x4 v_m3 = v_load_aligned((const int*)(_mag_a + j + 8));
v_int32x4 v_m4 = v_load_aligned((const int*)(_mag_a + j + 12));
v_int32x4 v_cmp1 = v_m1 > v_low;
v_int32x4 v_cmp2 = v_m2 > v_low;
v_int32x4 v_cmp3 = v_m3 > v_low;
v_int32x4 v_cmp4 = v_m4 > v_low;
v_m1 = v_load_aligned((const int*)(_mag_a + j + 16));
v_m2 = v_load_aligned((const int*)(_mag_a + j + 20));
v_m3 = v_load_aligned((const int*)(_mag_a + j + 24));
v_m4 = v_load_aligned((const int*)(_mag_a + j + 28));
v_store_aligned((signed char*)(_pmap + j), v_one);
v_store_aligned((signed char*)(_pmap + j + 16), v_one);
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4);
v_cmp1 = v_m1 > v_low;
v_cmp2 = v_m2 > v_low;
v_cmp3 = v_m3 > v_low;
v_cmp4 = v_m4 > v_low;
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81);
v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_cmp81 = v_pack(v_cmp3, v_cmp4);
unsigned int mask = v_signmask(v_cmp);
v_cmp = v_pack(v_cmp80, v_cmp81);
mask |= v_signmask(v_cmp) << 16;
if (mask)
v_int8 v_cmp = v_pack(v_pack(vx_load_aligned((const int*)(_mag_a + j )) > v_low,
vx_load_aligned((const int*)(_mag_a + j + v_int32::nlanes)) > v_low),
v_pack(vx_load_aligned((const int*)(_mag_a + j + 2*v_int32::nlanes)) > v_low,
vx_load_aligned((const int*)(_mag_a + j + 3*v_int32::nlanes)) > v_low));
while (v_check_any(v_cmp))
{
int k = j;
int l = v_scan_forward(v_cmp);
v_cmp &= vx_load(smask + v_int8::nlanes - 1 - l);
int k = j + l;
do
{
int l = trailingZeros32(mask);
k += l;
mask >>= l;
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
if (y < tg22x)
{
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
CANNY_CHECK(m, high, (_pmap+k), stack);
}
++k;
} while((mask >>= 1));
}
}
if (j <= src.cols - 16)
{
v_int32x4 v_m1 = v_load_aligned((const int*)(_mag_a + j));
v_int32x4 v_m2 = v_load_aligned((const int*)(_mag_a + j + 4));
v_int32x4 v_m3 = v_load_aligned((const int*)(_mag_a + j + 8));
v_int32x4 v_m4 = v_load_aligned((const int*)(_mag_a + j + 12));
v_store_aligned((signed char*)(_pmap + j), v_one);
v_int32x4 v_cmp1 = v_m1 > v_low;
v_int32x4 v_cmp2 = v_m2 > v_low;
v_int32x4 v_cmp3 = v_m3 > v_low;
v_int32x4 v_cmp4 = v_m4 > v_low;
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4);
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81);
unsigned int mask = v_signmask(v_cmp);
if (mask)
{
int k = j;
do
}
else
{
int l = trailingZeros32(mask);
k += l;
mask >>= l;
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
CANNY_CHECK(m, high, (_pmap+k), stack);
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
CANNY_CHECK(m, high, (_pmap+k), stack);
}
}
++k;
} while((mask >>= 1));
}
}
j += 16;
}
}
#endif
@ -723,6 +611,7 @@ public:
if (m > _mag_a[j - 1] && m >= _mag_a[j + 1])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
else
@ -733,6 +622,7 @@ public:
if (m > _mag_p[j] && m >= _mag_n[j])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
else
@ -741,6 +631,7 @@ public:
if(m > _mag_p[j - s] && m > _mag_n[j + s])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
}
@ -802,6 +693,9 @@ private:
ptrdiff_t mapstep;
int cn;
mutable Mutex mutex;
#if CV_SIMD
schar smask[2*v_int8::nlanes];
#endif
};
class finalPass : public ParallelLoopBody
@ -824,31 +718,31 @@ public:
int j = 0;
uchar *pdst = dst.ptr<uchar>(i);
const uchar *pmap = map.ptr<uchar>(i + 1);
#if CV_SIMD128
#if CV_SIMD
if (true)
pmap += CV_MALLOC_SIMD128;
pmap += CV_SIMD_WIDTH;
else
#endif
pmap += 1;
#if CV_SIMD128
#if CV_SIMD
{
const v_uint8x16 v_zero = v_setzero_u8();
const v_uint8x16 v_ff = ~v_zero;
const v_uint8x16 v_two(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2);
const v_uint8 v_zero = vx_setzero_u8();
const v_uint8 v_ff = ~v_zero;
const v_uint8 v_two = vx_setall_u8(2);
for (; j <= dst.cols - 16; j += 16)
for (; j <= dst.cols - v_uint8::nlanes; j += v_uint8::nlanes)
{
v_uint8x16 v_pmap = v_load_aligned((const unsigned char*)(pmap + j));
v_uint8 v_pmap = vx_load_aligned((const unsigned char*)(pmap + j));
v_pmap = v_select(v_pmap == v_two, v_ff, v_zero);
v_store((pdst + j), v_pmap);
}
if (j <= dst.cols - 8)
if (j <= dst.cols - v_uint8::nlanes/2)
{
v_uint8x16 v_pmap = v_load_low((const unsigned char*)(pmap + j));
v_uint8 v_pmap = vx_load_low((const unsigned char*)(pmap + j));
v_pmap = v_select(v_pmap == v_two, v_ff, v_zero);
v_store_low((pdst + j), v_pmap);
j += 8;
j += v_uint8::nlanes/2;
}
}
#endif

@ -1061,19 +1061,13 @@ cvFindNextContour( CvContourScanner scanner )
}
else
{
#if CV_SIMD_WIDTH > 16
v_uint8 vx_prev = vx_setall_u8((uchar)prev);
while (x <= width - v_uint8::nlanes &&
v_check_all(vx_load((uchar*)(img + x)) == vx_prev))
x += v_uint8::nlanes;
#endif
v_uint8x16 v_prev = v_setall_u8((uchar)prev);
for (; x <= width - v_uint8x16::nlanes; x += v_uint8x16::nlanes)
v_uint8 v_prev = vx_setall_u8((uchar)prev);
for (; x <= width - v_uint8::nlanes; x += v_uint8::nlanes)
{
unsigned int mask = (unsigned int)v_signmask(v_load((uchar*)(img + x)) != v_prev);
if (mask)
v_uint8 vmask = (vx_load((uchar*)(img + x)) != v_prev);
if (v_check_any(vmask))
{
p = img[(x += cv::trailingZeros32(mask))];
p = img[(x += v_scan_forward(vmask))];
goto _next_contour;
}
}
@ -1334,19 +1328,13 @@ CvLinkedRunPoint;
inline int findStartContourPoint(uchar *src_data, CvSize img_size, int j)
{
#if CV_SIMD
#if CV_SIMD_WIDTH > 16
v_uint8 vx_zero = vx_setzero_u8();
while (j <= img_size.width - v_uint8::nlanes &&
v_check_all(vx_load((uchar*)(src_data + j)) == vx_zero))
j += v_uint8::nlanes;
#endif
v_uint8x16 v_zero = v_setzero_u8();
for (; j <= img_size.width - v_uint8x16::nlanes; j += v_uint8x16::nlanes)
v_uint8 v_zero = vx_setzero_u8();
for (; j <= img_size.width - v_uint8::nlanes; j += v_uint8::nlanes)
{
unsigned int mask = (unsigned int)v_signmask(v_load((uchar*)(src_data + j)) != v_zero);
if (mask)
v_uint8 vmask = (vx_load((uchar*)(src_data + j)) != v_zero);
if (v_check_any(vmask))
{
j += cv::trailingZeros32(mask);
j += v_scan_forward(vmask);
return j;
}
}
@ -1365,19 +1353,13 @@ inline int findEndContourPoint(uchar *src_data, CvSize img_size, int j)
}
else
{
#if CV_SIMD_WIDTH > 16
v_uint8 vx_zero = vx_setzero_u8();
while (j <= img_size.width - v_uint8::nlanes &&
v_check_all(vx_load((uchar*)(src_data + j)) != vx_zero))
j += v_uint8::nlanes;
#endif
v_uint8x16 v_zero = v_setzero_u8();
v_uint8 v_zero = vx_setzero_u8();
for (; j <= img_size.width - v_uint8::nlanes; j += v_uint8::nlanes)
{
unsigned int mask = (unsigned int)v_signmask(v_load((uchar*)(src_data + j)) == v_zero);
if (mask)
v_uint8 vmask = (vx_load((uchar*)(src_data + j)) == v_zero);
if (v_check_any(vmask))
{
j += cv::trailingZeros32(mask);
j += v_scan_forward(vmask);
return j;
}
}

@ -1139,32 +1139,23 @@ public:
for(; x < numCols; ++x )
{
#if CV_SIMD128
#if CV_SIMD
{
v_uint8x16 v_zero = v_setzero_u8();
v_uint8 v_zero = vx_setzero_u8();
for(; x <= numCols - 32; x += 32) {
v_uint8x16 v_edge1 = v_load(edgeData + x);
v_uint8x16 v_edge2 = v_load(edgeData + x + 16);
for(; x <= numCols - 2*v_uint8::nlanes; x += 2*v_uint8::nlanes) {
v_uint8 v_edge1 = (vx_load(edgeData + x ) != v_zero);
v_uint8 v_edge2 = (vx_load(edgeData + x + v_uint8::nlanes) != v_zero);
v_uint8x16 v_cmp1 = (v_edge1 == v_zero);
v_uint8x16 v_cmp2 = (v_edge2 == v_zero);
unsigned int mask1 = v_signmask(v_cmp1);
unsigned int mask2 = v_signmask(v_cmp2);
mask1 ^= 0x0000ffff;
mask2 ^= 0x0000ffff;
if(mask1)
if(v_check_any(v_edge1))
{
x += trailingZeros32(mask1);
x += v_scan_forward(v_edge1);
goto _next_step;
}
if(mask2)
if(v_check_any(v_edge2))
{
x += trailingZeros32(mask2 << 16);
x += v_uint8::nlanes + v_scan_forward(v_edge2);
goto _next_step;
}
}
@ -1175,7 +1166,7 @@ public:
if(x == numCols)
continue;
#if CV_SIMD128
#if CV_SIMD
_next_step:
#endif
float vx, vy;
@ -1506,36 +1497,35 @@ inline int HoughCircleEstimateRadiusInvoker<NZPointList>::filterCircles(const Po
int nzCount = 0;
const Point* nz_ = &nz[0];
int j = 0;
#if CV_SIMD128
#if CV_SIMD
{
const v_float32x4 v_minRadius2 = v_setall_f32(minRadius2);
const v_float32x4 v_maxRadius2 = v_setall_f32(maxRadius2);
const v_float32 v_minRadius2 = vx_setall_f32(minRadius2);
const v_float32 v_maxRadius2 = vx_setall_f32(maxRadius2);
v_float32x4 v_curCenterX = v_setall_f32(curCenter.x);
v_float32x4 v_curCenterY = v_setall_f32(curCenter.y);
v_float32 v_curCenterX = vx_setall_f32(curCenter.x);
v_float32 v_curCenterY = vx_setall_f32(curCenter.y);
float CV_DECL_ALIGNED(16) rbuf[4];
for(; j <= nzSz - 4; j += 4)
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rbuf[v_float32::nlanes];
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) rmask[v_int32::nlanes];
for(; j <= nzSz - v_float32::nlanes; j += v_float32::nlanes)
{
v_float32x4 v_nzX, v_nzY;
v_float32 v_nzX, v_nzY;
v_load_deinterleave((const float*)&nz_[j], v_nzX, v_nzY); // FIXIT use proper datatype
v_float32x4 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX));
v_float32x4 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY));
v_float32 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX));
v_float32 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY));
v_float32x4 v_dx = v_x - v_curCenterX;
v_float32x4 v_dy = v_y - v_curCenterY;
v_float32 v_dx = v_x - v_curCenterX;
v_float32 v_dy = v_y - v_curCenterY;
v_float32x4 v_r2 = (v_dx * v_dx) + (v_dy * v_dy);
v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2);
unsigned int mask = v_signmask(vmask);
if (mask)
v_float32 v_r2 = (v_dx * v_dx) + (v_dy * v_dy);
v_float32 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2);
if (v_check_any(vmask))
{
v_store_aligned(rmask, v_reinterpret_as_s32(vmask));
v_store_aligned(rbuf, v_r2);
if (mask & 1) ddata[nzCount++] = rbuf[0];
if (mask & 2) ddata[nzCount++] = rbuf[1];
if (mask & 4) ddata[nzCount++] = rbuf[2];
if (mask & 8) ddata[nzCount++] = rbuf[3];
for (int i = 0; i < v_int32::nlanes; ++i)
if (rmask[i]) ddata[nzCount++] = rbuf[i];
}
}
}
@ -1566,12 +1556,13 @@ inline int HoughCircleEstimateRadiusInvoker<NZPointSet>::filterCircles(const Poi
const Range xOuter = Range(std::max(int(curCenter.x - rOuter), 0), std::min(int(curCenter.x + rOuter), positions.cols));
const Range yOuter = Range(std::max(int(curCenter.y - rOuter), 0), std::min(int(curCenter.y + rOuter), positions.rows));
#if CV_SIMD128
const int numSIMDPoints = 4;
const v_float32x4 v_minRadius2 = v_setall_f32(minRadius2);
const v_float32x4 v_maxRadius2 = v_setall_f32(maxRadius2);
const v_float32x4 v_curCenterX_0123 = v_setall_f32(curCenter.x) - v_float32x4(0.0f, 1.0f, 2.0f, 3.0f);
#if CV_SIMD
float v_seq[v_float32::nlanes];
for (int i = 0; i < v_float32::nlanes; ++i)
v_seq[i] = (float)i;
const v_float32 v_minRadius2 = vx_setall_f32(minRadius2);
const v_float32 v_maxRadius2 = vx_setall_f32(maxRadius2);
const v_float32 v_curCenterX_0123 = vx_setall_f32(curCenter.x) - vx_load(v_seq);
#endif
for (int y = yOuter.start; y < yOuter.end; y++)
@ -1581,29 +1572,28 @@ inline int HoughCircleEstimateRadiusInvoker<NZPointSet>::filterCircles(const Poi
float dy2 = dy * dy;
int x = xOuter.start;
#if CV_SIMD128
#if CV_SIMD
{
const v_float32x4 v_dy2 = v_setall_f32(dy2);
const v_uint32x4 v_zero_u32 = v_setall_u32(0);
float CV_DECL_ALIGNED(16) rbuf[4];
for (; x <= xOuter.end - 4; x += numSIMDPoints)
const v_float32 v_dy2 = vx_setall_f32(dy2);
const v_uint32 v_zero_u32 = vx_setall_u32(0);
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rbuf[v_float32::nlanes];
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) rmask[v_int32::nlanes];
for (; x <= xOuter.end - v_float32::nlanes; x += v_float32::nlanes)
{
v_uint32x4 v_mask = v_load_expand_q(ptr + x);
v_uint32 v_mask = vx_load_expand_q(ptr + x);
v_mask = v_mask != v_zero_u32;
v_float32x4 v_x = v_cvt_f32(v_setall_s32(x));
v_float32x4 v_dx = v_x - v_curCenterX_0123;
v_float32 v_x = v_cvt_f32(vx_setall_s32(x));
v_float32 v_dx = v_x - v_curCenterX_0123;
v_float32x4 v_r2 = (v_dx * v_dx) + v_dy2;
v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2) & v_reinterpret_as_f32(v_mask);
unsigned int mask = v_signmask(vmask);
if (mask)
v_float32 v_r2 = (v_dx * v_dx) + v_dy2;
v_float32 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2) & v_reinterpret_as_f32(v_mask);
if (v_check_any(vmask))
{
v_store_aligned(rmask, v_reinterpret_as_s32(vmask));
v_store_aligned(rbuf, v_r2);
if (mask & 1) ddata[nzCount++] = rbuf[0];
if (mask & 2) ddata[nzCount++] = rbuf[1];
if (mask & 4) ddata[nzCount++] = rbuf[2];
if (mask & 8) ddata[nzCount++] = rbuf[3];
for (int i = 0; i < v_int32::nlanes; ++i)
if (rmask[i]) ddata[nzCount++] = rbuf[i];
}
}
}

Loading…
Cancel
Save