added test for goodFeaturesToTrack;

pull/3540/head
ausentso 9 years ago
parent 298c98ea32
commit 9abdf39c90
  1. 11
      modules/imgproc/src/featureselect.cpp
  2. 495
      modules/imgproc/test/test_goodfeaturetotrack.cpp
  3. 3
      modules/ts/include/opencv2/ts.hpp
  4. 262
      modules/ts/src/ts_func.cpp

@ -309,11 +309,18 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
tmpCorners.push_back(eig_data + x);
}
}
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
std::vector<Point2f> corners;
size_t i, j, total = tmpCorners.size(), ncorners = 0;
if (total == 0)
{
_corners.release();
return;
}
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
if (minDistance >= 1)
{
// Partition the image into larger grids
@ -351,6 +358,7 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
y2 = std::min(grid_height-1, y2);
for( int yy = y1; yy <= y2; yy++ )
{
for( int xx = x1; xx <= x2; xx++ )
{
std::vector <Point2f> &m = grid[yy*grid_width + xx];
@ -370,6 +378,7 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
}
}
}
}
break_out:

@ -0,0 +1,495 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
using namespace cv;
using namespace std;
enum { MINEIGENVAL=0, HARRIS=1, EIGENVALSVECS=2 };
#if 0 //set 1 to switch ON debug message
#define TEST_MESSAGE( message ) std::cout << message;
#define TEST_MESSAGEL( message, val) std::cout << message << val << std::endl;
#else
#define TEST_MESSAGE( message )
#define TEST_MESSAGEL( message, val)
#endif
/////////////////////ref//////////////////////
struct greaterThanPtr :
public std::binary_function<const float *, const float *, bool>
{
bool operator () (const float * a, const float * b) const
{ return *a > *b; }
};
static void
test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size,
int _aperture_size, double k, int mode, int borderType, const Scalar& _borderValue )
{
int i, j;
Scalar borderValue = _borderValue;
int aperture_size = _aperture_size < 0 ? 3 : _aperture_size;
Point anchor( aperture_size/2, aperture_size/2 );
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 );
CV_Assert( eigenv.type() == CV_32FC1 );
CV_Assert( ( src.rows == eigenv.rows ) &&
(((mode == MINEIGENVAL)||(mode == HARRIS)) && (src.cols == eigenv.cols)) );
int type = src.type();
int ftype = CV_32FC1;
double kernel_scale = 1;
Mat dx2, dy2, dxdy(src.size(), CV_32F), kernel;
kernel = cvtest::calcSobelKernel2D( 1, 0, _aperture_size );
cvtest::filter2D( src, dx2, ftype, kernel*kernel_scale, anchor, 0, borderType, borderValue );
kernel = cvtest::calcSobelKernel2D( 0, 1, _aperture_size );
cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, borderType,borderValue );
double denom = (1 << (aperture_size-1))*block_size;
denom = denom * denom;
if( _aperture_size < 0 )
denom *= 4;
if(type != ftype )
denom *= 255.;
denom = 1./denom;
for( i = 0; i < src.rows; i++ )
{
float* dxdyp = dxdy.ptr<float>(i);
float* dx2p = dx2.ptr<float>(i);
float* dy2p = dy2.ptr<float>(i);
for( j = 0; j < src.cols; j++ )
{
double xval = dx2p[j], yval = dy2p[j];
dxdyp[j] = (float)(xval*yval*denom);
dx2p[j] = (float)(xval*xval*denom);
dy2p[j] = (float)(yval*yval*denom);
}
}
kernel = Mat::ones(block_size, block_size, CV_32F);
anchor = Point(block_size/2, block_size/2);
cvtest::filter2D( dx2, dx2, ftype, kernel, anchor, 0, borderType, borderValue );
cvtest::filter2D( dy2, dy2, ftype, kernel, anchor, 0, borderType, borderValue );
cvtest::filter2D( dxdy, dxdy, ftype, kernel, anchor, 0, borderType, borderValue );
if( mode == MINEIGENVAL )
{
for( i = 0; i < src.rows; i++ )
{
float* eigenvp = eigenv.ptr<float>(i);
const float* dxdyp = dxdy.ptr<float>(i);
const float* dx2p = dx2.ptr<float>(i);
const float* dy2p = dy2.ptr<float>(i);
for( j = 0; j < src.cols; j++ )
{
double a = dx2p[j], b = dxdyp[j], c = dy2p[j];
double d = sqrt( ( a - c )*( a - c ) + 4*b*b );
eigenvp[j] = (float)( 0.5*(a + c - d));
}
}
}
else if( mode == HARRIS )
{
for( i = 0; i < src.rows; i++ )
{
float* eigenvp = eigenv.ptr<float>(i);
const float* dxdyp = dxdy.ptr<float>(i);
const float* dx2p = dx2.ptr<float>(i);
const float* dy2p = dy2.ptr<float>(i);
for( j = 0; j < src.cols; j++ )
{
double a = dx2p[j], b = dxdyp[j], c = dy2p[j];
eigenvp[j] = (float)(a*c - b*b - k*(a + c)*(a + c));
}
}
}
}
static void
test_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize,
bool useHarrisDetector, double harrisK )
{
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 );
CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) );
Mat image = _image.getMat(), mask = _mask.getMat();
int aperture_size = 3;
int borderType = BORDER_DEFAULT;
Mat eig, tmp, tt;
eig.create( image.size(), CV_32F );
if( useHarrisDetector )
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, harrisK, HARRIS, borderType, 0 );
else
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, 0, MINEIGENVAL, borderType, 0 );
double maxVal = 0;
cvtest::minMaxIdx( eig, 0, &maxVal, 0, 0, mask );
cvtest::threshold( eig, eig, (float)(maxVal*qualityLevel), 0.f,THRESH_TOZERO );
cvtest::dilate( eig, tmp, Mat(),Point(-1,-1),borderType,0);
Size imgsize = image.size();
vector<const float*> tmpCorners;
// collect list of pointers to features - put them into temporary image
for( int y = 1; y < imgsize.height - 1; y++ )
{
const float* eig_data = (const float*)eig.ptr(y);
const float* tmp_data = (const float*)tmp.ptr(y);
const uchar* mask_data = mask.data ? mask.ptr(y) : 0;
for( int x = 1; x < imgsize.width - 1; x++ )
{
float val = eig_data[x];
if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) )
{
tmpCorners.push_back(eig_data + x);
}
}
}
vector<Point2f> corners;
size_t i, j, total = tmpCorners.size(), ncorners = 0;
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
if(minDistance >= 1)
{
// Partition the image into larger grids
int w = image.cols;
int h = image.rows;
const int cell_size = cvRound(minDistance);
const int grid_width = (w + cell_size - 1) / cell_size;
const int grid_height = (h + cell_size - 1) / cell_size;
std::vector<std::vector<Point2f> > grid(grid_width*grid_height);
minDistance *= minDistance;
for( i = 0; i < total; i++ )
{
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data);
int y = (int)(ofs / eig.step);
int x = (int)((ofs - y*eig.step)/sizeof(float));
bool good = true;
int x_cell = x / cell_size;
int y_cell = y / cell_size;
int x1 = x_cell - 1;
int y1 = y_cell - 1;
int x2 = x_cell + 1;
int y2 = y_cell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(grid_width-1, x2);
y2 = std::min(grid_height-1, y2);
for( int yy = y1; yy <= y2; yy++ )
{
for( int xx = x1; xx <= x2; xx++ )
{
vector <Point2f> &m = grid[yy*grid_width + xx];
if( m.size() )
{
for(j = 0; j < m.size(); j++)
{
float dx = x - m[j].x;
float dy = y - m[j].y;
if( dx*dx + dy*dy < minDistance )
{
good = false;
goto break_out;
}
}
}
}
}
break_out:
if(good)
{
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
}
else
{
for( i = 0; i < total; i++ )
{
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data);
int y = (int)(ofs / eig.step);
int x = (int)((ofs - y*eig.step)/sizeof(float));
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
}
/////////////////end of ref code//////////////////////////
class CV_GoodFeatureToTTest : public cvtest::ArrayTest
{
public:
CV_GoodFeatureToTTest();
protected:
int prepare_test_case( int test_case_idx );
void run_func();
int validate_test_results( int test_case_idx );
int aperture_size;
Mat src, src_gray;
Mat src_gray32f, src_gray8U;
Mat mask;
int maxCorners;
vector<Point2f> corners;
vector<Point2f> Refcorners;
double qualityLevel;
double minDistance;
int blockSize;
bool useHarrisDetector;
double k;
int SrcType;
};
CV_GoodFeatureToTTest::CV_GoodFeatureToTTest()
{
RNG& rng = ts->get_rng();
maxCorners = rng.uniform( 50, 100 );
qualityLevel = 0.01;
minDistance = 10;
blockSize = 3;
useHarrisDetector = false;
k = 0.04;
mask = Mat();
test_case_count = 4;
}
int CV_GoodFeatureToTTest::prepare_test_case( int test_case_idx )
{
const static int types[] = { CV_32FC1, CV_8UC1 };
cvtest::TS& tst = *cvtest::TS::ptr();
src = imread(string(tst.get_data_path()) + "shared/fruits.png", IMREAD_COLOR);
CV_Assert(src.data != NULL);
cvtColor( src, src_gray, CV_BGR2GRAY );
SrcType = types[test_case_idx & 0x1];
useHarrisDetector = test_case_idx & 2 ? true : false;
return 1;
}
void CV_GoodFeatureToTTest::run_func()
{
int cn = src_gray.channels();
CV_Assert( cn == 1 );
CV_Assert( ( CV_MAT_DEPTH(SrcType) == CV_32FC1 ) || ( CV_MAT_DEPTH(SrcType) == CV_8UC1 ));
TEST_MESSAGEL (" maxCorners = ", maxCorners)
if (useHarrisDetector)
{
TEST_MESSAGE (" useHarrisDetector = true\n");
}
else
{
TEST_MESSAGE (" useHarrisDetector = false\n");
}
if( CV_MAT_DEPTH(SrcType) == CV_32FC1)
{
if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1);
else src_gray32f = src_gray.clone();
TEST_MESSAGE ("goodFeaturesToTrack 32f\n")
goodFeaturesToTrack( src_gray32f,
corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k );
}
else
{
if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1);
else src_gray8U = src_gray.clone();
TEST_MESSAGE ("goodFeaturesToTrack 8U\n")
goodFeaturesToTrack( src_gray8U,
corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k );
}
}
int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx )
{
static const double eps = 2e-6;
if( CV_MAT_DEPTH(SrcType) == CV_32FC1 )
{
if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1);
else src_gray32f = src_gray.clone();
TEST_MESSAGE ("test_goodFeaturesToTrack 32f\n")
test_goodFeaturesToTrack( src_gray32f,
Refcorners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k );
}
else
{
if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1);
else src_gray8U = src_gray.clone();
TEST_MESSAGE ("test_goodFeaturesToTrack 8U\n")
test_goodFeaturesToTrack( src_gray8U,
Refcorners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k );
}
double e =norm(corners, Refcorners);
if (e > eps)
{
TEST_MESSAGEL ("Number of features: Refcorners = ", Refcorners.size())
TEST_MESSAGEL (" TestCorners = ", corners.size())
TEST_MESSAGE ("\n")
ts->printf(cvtest::TS::CONSOLE, "actual error: %g, expected: %g", e, eps);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
for(int i = 0; i < (int)std::min((unsigned int)(corners.size()), (unsigned int)(Refcorners.size())); i++){
if ( (corners[i].x != Refcorners[i].x) || (corners[i].y != Refcorners[i].y))
printf("i = %i X %2.2f Xref %2.2f Y %2.2f Yref %2.2f\n",i,corners[i].x,Refcorners[i].x,corners[i].y,Refcorners[i].y);
}
}
else
{
TEST_MESSAGEL (" Refcorners = ", Refcorners.size())
TEST_MESSAGEL (" TestCorners = ", corners.size())
TEST_MESSAGE ("\n")
ts->set_failed_test_info(cvtest::TS::OK);
}
return BaseTest::validate_test_results(test_case_idx);
}
TEST(Imgproc_GoodFeatureToT, accuracy) { CV_GoodFeatureToTTest test; test.safe_run(); }
/* End of file. */

@ -163,6 +163,9 @@ CV_EXPORTS void gemm(const Mat& src1, const Mat& src2, double alpha,
const Mat& src3, double beta, Mat& dst, int flags);
CV_EXPORTS void transform( const Mat& src, Mat& dst, const Mat& transmat, const Mat& shift );
CV_EXPORTS double crossCorr(const Mat& src1, const Mat& src2);
CV_EXPORTS void threshold( const Mat& src, Mat& dst, double thresh, double maxval, int thresh_type );
CV_EXPORTS void minMaxIdx( InputArray _img, double* minVal, double* maxVal,
Point* minLoc, Point* maxLoc, InputArray _mask );
struct CV_EXPORTS MatInfo
{

@ -1,6 +1,7 @@
#include "precomp.hpp"
#include <float.h>
#include <limits.h>
#include "opencv2/imgproc/types_c.h"
#ifdef HAVE_TEGRA_OPTIMIZATION
#include "tegra.hpp"
@ -3074,4 +3075,265 @@ void printVersionInfo(bool useStdOut)
#endif
}
void threshold( const Mat& _src, Mat& _dst,
double thresh, double maxval, int thresh_type )
{
int i, j;
int depth = _src.depth(), cn = _src.channels();
int width_n = _src.cols*cn, height = _src.rows;
int ithresh = cvFloor(thresh);
int imaxval, ithresh2;
if( depth == CV_8U )
{
ithresh2 = saturate_cast<uchar>(ithresh);
imaxval = saturate_cast<uchar>(maxval);
}
else if( depth == CV_16S )
{
ithresh2 = saturate_cast<short>(ithresh);
imaxval = saturate_cast<short>(maxval);
}
else
{
ithresh2 = cvRound(ithresh);
imaxval = cvRound(maxval);
}
assert( depth == CV_8U || depth == CV_16S || depth == CV_32F );
switch( thresh_type )
{
case CV_THRESH_BINARY:
for( i = 0; i < height; i++ )
{
if( depth == CV_8U )
{
const uchar* src = _src.ptr<uchar>(i);
uchar* dst = _dst.ptr<uchar>(i);
for( j = 0; j < width_n; j++ )
dst[j] = (uchar)(src[j] > ithresh ? imaxval : 0);
}
else if( depth == CV_16S )
{
const short* src = _src.ptr<short>(i);
short* dst = _dst.ptr<short>(i);
for( j = 0; j < width_n; j++ )
dst[j] = (short)(src[j] > ithresh ? imaxval : 0);
}
else
{
const float* src = _src.ptr<float>(i);
float* dst = _dst.ptr<float>(i);
for( j = 0; j < width_n; j++ )
dst[j] = (float)((double)src[j] > thresh ? maxval : 0.f);
}
}
break;
case CV_THRESH_BINARY_INV:
for( i = 0; i < height; i++ )
{
if( depth == CV_8U )
{
const uchar* src = _src.ptr<uchar>(i);
uchar* dst = _dst.ptr<uchar>(i);
for( j = 0; j < width_n; j++ )
dst[j] = (uchar)(src[j] > ithresh ? 0 : imaxval);
}
else if( depth == CV_16S )
{
const short* src = _src.ptr<short>(i);
short* dst = _dst.ptr<short>(i);
for( j = 0; j < width_n; j++ )
dst[j] = (short)(src[j] > ithresh ? 0 : imaxval);
}
else
{
const float* src = _src.ptr<float>(i);
float* dst = _dst.ptr<float>(i);
for( j = 0; j < width_n; j++ )
dst[j] = (float)((double)src[j] > thresh ? 0.f : maxval);
}
}
break;
case CV_THRESH_TRUNC:
for( i = 0; i < height; i++ )
{
if( depth == CV_8U )
{
const uchar* src = _src.ptr<uchar>(i);
uchar* dst = _dst.ptr<uchar>(i);
for( j = 0; j < width_n; j++ )
{
int s = src[j];
dst[j] = (uchar)(s > ithresh ? ithresh2 : s);
}
}
else if( depth == CV_16S )
{
const short* src = _src.ptr<short>(i);
short* dst = _dst.ptr<short>(i);
for( j = 0; j < width_n; j++ )
{
int s = src[j];
dst[j] = (short)(s > ithresh ? ithresh2 : s);
}
}
else
{
const float* src = _src.ptr<float>(i);
float* dst = _dst.ptr<float>(i);
for( j = 0; j < width_n; j++ )
{
double s = src[j];
dst[j] = (float)(s > thresh ? thresh : s);
}
}
}
break;
case CV_THRESH_TOZERO:
for( i = 0; i < height; i++ )
{
if( depth == CV_8U )
{
const uchar* src = _src.ptr<uchar>(i);
uchar* dst = _dst.ptr<uchar>(i);
for( j = 0; j < width_n; j++ )
{
int s = src[j];
dst[j] = (uchar)(s > ithresh ? s : 0);
}
}
else if( depth == CV_16S )
{
const short* src = _src.ptr<short>(i);
short* dst = _dst.ptr<short>(i);
for( j = 0; j < width_n; j++ )
{
int s = src[j];
dst[j] = (short)(s > ithresh ? s : 0);
}
}
else
{
const float* src = _src.ptr<float>(i);
float* dst = _dst.ptr<float>(i);
for( j = 0; j < width_n; j++ )
{
float s = src[j];
dst[j] = s > thresh ? s : 0.f;
}
}
}
break;
case CV_THRESH_TOZERO_INV:
for( i = 0; i < height; i++ )
{
if( depth == CV_8U )
{
const uchar* src = _src.ptr<uchar>(i);
uchar* dst = _dst.ptr<uchar>(i);
for( j = 0; j < width_n; j++ )
{
int s = src[j];
dst[j] = (uchar)(s > ithresh ? 0 : s);
}
}
else if( depth == CV_16S )
{
const short* src = _src.ptr<short>(i);
short* dst = _dst.ptr<short>(i);
for( j = 0; j < width_n; j++ )
{
int s = src[j];
dst[j] = (short)(s > ithresh ? 0 : s);
}
}
else
{
const float* src = _src.ptr<float>(i);
float* dst = _dst.ptr<float>(i);
for( j = 0; j < width_n; j++ )
{
float s = src[j];
dst[j] = s > thresh ? 0.f : s;
}
}
}
break;
default:
assert(0);
}
}
static void
_minMaxIdx( const float* src, const uchar* mask, double* _minVal, double* _maxVal,
size_t* _minIdx, size_t* _maxIdx, int len, size_t startIdx )
{
double minVal = FLT_MAX, maxVal = -FLT_MAX;
size_t minIdx = 0, maxIdx = 0;
if( !mask )
{
for( int i = 0; i < len; i++ )
{
float val = src[i];
if( val < minVal )
{
minVal = val;
minIdx = startIdx + i;
}
if( val > maxVal )
{
maxVal = val;
maxIdx = startIdx + i;
}
}
}
else
{
for( int i = 0; i < len; i++ )
{
float val = src[i];
if( mask[i] && val < minVal )
{
minVal = val;
minIdx = startIdx + i;
}
if( mask[i] && val > maxVal )
{
maxVal = val;
maxIdx = startIdx + i;
}
}
}
if (_minIdx)
*_minIdx = minIdx;
if (_maxIdx)
*_maxIdx = maxIdx;
if (_minVal)
*_minVal = minVal;
if (_maxVal)
*_maxVal = maxVal;
}
void minMaxIdx( InputArray _img, double* minVal, double* maxVal,
Point* minLoc, Point* maxLoc, InputArray _mask )
{
Mat img = _img.getMat();
Mat mask = _mask.getMat();
CV_Assert(img.dims <= 2);
_minMaxIdx((const float*)img.data, mask.data, minVal, maxVal, (size_t*)minLoc, (size_t*)maxLoc, (int)img.total(),1);
if( minLoc )
std::swap(minLoc->x, minLoc->y);
if( maxLoc )
std::swap(maxLoc->x, maxLoc->y);
}
}

Loading…
Cancel
Save