mirror of https://github.com/opencv/opencv.git
parent
298c98ea32
commit
9abdf39c90
4 changed files with 770 additions and 1 deletions
@ -0,0 +1,495 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
enum { MINEIGENVAL=0, HARRIS=1, EIGENVALSVECS=2 }; |
||||
|
||||
|
||||
#if 0 //set 1 to switch ON debug message
|
||||
#define TEST_MESSAGE( message ) std::cout << message; |
||||
#define TEST_MESSAGEL( message, val) std::cout << message << val << std::endl; |
||||
#else |
||||
#define TEST_MESSAGE( message ) |
||||
#define TEST_MESSAGEL( message, val) |
||||
#endif |
||||
|
||||
/////////////////////ref//////////////////////
|
||||
|
||||
struct greaterThanPtr : |
||||
public std::binary_function<const float *, const float *, bool> |
||||
{ |
||||
bool operator () (const float * a, const float * b) const |
||||
{ return *a > *b; } |
||||
}; |
||||
|
||||
static void |
||||
test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size, |
||||
int _aperture_size, double k, int mode, int borderType, const Scalar& _borderValue ) |
||||
{ |
||||
int i, j; |
||||
Scalar borderValue = _borderValue; |
||||
int aperture_size = _aperture_size < 0 ? 3 : _aperture_size; |
||||
Point anchor( aperture_size/2, aperture_size/2 ); |
||||
|
||||
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 ); |
||||
CV_Assert( eigenv.type() == CV_32FC1 ); |
||||
CV_Assert( ( src.rows == eigenv.rows ) && |
||||
(((mode == MINEIGENVAL)||(mode == HARRIS)) && (src.cols == eigenv.cols)) ); |
||||
|
||||
int type = src.type(); |
||||
int ftype = CV_32FC1; |
||||
double kernel_scale = 1; |
||||
|
||||
Mat dx2, dy2, dxdy(src.size(), CV_32F), kernel; |
||||
|
||||
kernel = cvtest::calcSobelKernel2D( 1, 0, _aperture_size ); |
||||
cvtest::filter2D( src, dx2, ftype, kernel*kernel_scale, anchor, 0, borderType, borderValue ); |
||||
kernel = cvtest::calcSobelKernel2D( 0, 1, _aperture_size ); |
||||
cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, borderType,borderValue ); |
||||
|
||||
double denom = (1 << (aperture_size-1))*block_size; |
||||
denom = denom * denom; |
||||
|
||||
if( _aperture_size < 0 ) |
||||
denom *= 4; |
||||
if(type != ftype ) |
||||
denom *= 255.; |
||||
|
||||
denom = 1./denom; |
||||
|
||||
for( i = 0; i < src.rows; i++ ) |
||||
{ |
||||
float* dxdyp = dxdy.ptr<float>(i); |
||||
float* dx2p = dx2.ptr<float>(i); |
||||
float* dy2p = dy2.ptr<float>(i); |
||||
|
||||
for( j = 0; j < src.cols; j++ ) |
||||
{ |
||||
double xval = dx2p[j], yval = dy2p[j]; |
||||
dxdyp[j] = (float)(xval*yval*denom); |
||||
dx2p[j] = (float)(xval*xval*denom); |
||||
dy2p[j] = (float)(yval*yval*denom); |
||||
} |
||||
} |
||||
|
||||
kernel = Mat::ones(block_size, block_size, CV_32F); |
||||
anchor = Point(block_size/2, block_size/2); |
||||
|
||||
cvtest::filter2D( dx2, dx2, ftype, kernel, anchor, 0, borderType, borderValue ); |
||||
cvtest::filter2D( dy2, dy2, ftype, kernel, anchor, 0, borderType, borderValue ); |
||||
cvtest::filter2D( dxdy, dxdy, ftype, kernel, anchor, 0, borderType, borderValue ); |
||||
|
||||
if( mode == MINEIGENVAL ) |
||||
{ |
||||
for( i = 0; i < src.rows; i++ ) |
||||
{ |
||||
float* eigenvp = eigenv.ptr<float>(i); |
||||
const float* dxdyp = dxdy.ptr<float>(i); |
||||
const float* dx2p = dx2.ptr<float>(i); |
||||
const float* dy2p = dy2.ptr<float>(i); |
||||
|
||||
for( j = 0; j < src.cols; j++ ) |
||||
{ |
||||
double a = dx2p[j], b = dxdyp[j], c = dy2p[j]; |
||||
double d = sqrt( ( a - c )*( a - c ) + 4*b*b ); |
||||
eigenvp[j] = (float)( 0.5*(a + c - d)); |
||||
} |
||||
} |
||||
} |
||||
else if( mode == HARRIS ) |
||||
{ |
||||
|
||||
for( i = 0; i < src.rows; i++ ) |
||||
{ |
||||
float* eigenvp = eigenv.ptr<float>(i); |
||||
const float* dxdyp = dxdy.ptr<float>(i); |
||||
const float* dx2p = dx2.ptr<float>(i); |
||||
const float* dy2p = dy2.ptr<float>(i); |
||||
|
||||
for( j = 0; j < src.cols; j++ ) |
||||
{ |
||||
double a = dx2p[j], b = dxdyp[j], c = dy2p[j]; |
||||
eigenvp[j] = (float)(a*c - b*b - k*(a + c)*(a + c)); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
static void |
||||
test_goodFeaturesToTrack( InputArray _image, OutputArray _corners, |
||||
int maxCorners, double qualityLevel, double minDistance, |
||||
InputArray _mask, int blockSize, |
||||
bool useHarrisDetector, double harrisK ) |
||||
{ |
||||
|
||||
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 ); |
||||
CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) ); |
||||
|
||||
|
||||
Mat image = _image.getMat(), mask = _mask.getMat(); |
||||
int aperture_size = 3; |
||||
int borderType = BORDER_DEFAULT; |
||||
|
||||
Mat eig, tmp, tt; |
||||
|
||||
eig.create( image.size(), CV_32F ); |
||||
|
||||
if( useHarrisDetector ) |
||||
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, harrisK, HARRIS, borderType, 0 ); |
||||
else |
||||
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, 0, MINEIGENVAL, borderType, 0 ); |
||||
|
||||
double maxVal = 0; |
||||
|
||||
cvtest::minMaxIdx( eig, 0, &maxVal, 0, 0, mask ); |
||||
cvtest::threshold( eig, eig, (float)(maxVal*qualityLevel), 0.f,THRESH_TOZERO ); |
||||
cvtest::dilate( eig, tmp, Mat(),Point(-1,-1),borderType,0); |
||||
|
||||
Size imgsize = image.size(); |
||||
|
||||
vector<const float*> tmpCorners; |
||||
|
||||
// collect list of pointers to features - put them into temporary image
|
||||
for( int y = 1; y < imgsize.height - 1; y++ ) |
||||
{ |
||||
const float* eig_data = (const float*)eig.ptr(y); |
||||
const float* tmp_data = (const float*)tmp.ptr(y); |
||||
const uchar* mask_data = mask.data ? mask.ptr(y) : 0; |
||||
|
||||
for( int x = 1; x < imgsize.width - 1; x++ ) |
||||
{ |
||||
float val = eig_data[x]; |
||||
if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) ) |
||||
{ |
||||
tmpCorners.push_back(eig_data + x); |
||||
} |
||||
} |
||||
} |
||||
|
||||
vector<Point2f> corners; |
||||
size_t i, j, total = tmpCorners.size(), ncorners = 0; |
||||
|
||||
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() ); |
||||
|
||||
if(minDistance >= 1) |
||||
{ |
||||
// Partition the image into larger grids
|
||||
int w = image.cols; |
||||
int h = image.rows; |
||||
|
||||
const int cell_size = cvRound(minDistance); |
||||
const int grid_width = (w + cell_size - 1) / cell_size; |
||||
const int grid_height = (h + cell_size - 1) / cell_size; |
||||
|
||||
std::vector<std::vector<Point2f> > grid(grid_width*grid_height); |
||||
|
||||
minDistance *= minDistance; |
||||
|
||||
for( i = 0; i < total; i++ ) |
||||
{ |
||||
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data); |
||||
int y = (int)(ofs / eig.step); |
||||
int x = (int)((ofs - y*eig.step)/sizeof(float)); |
||||
|
||||
bool good = true; |
||||
|
||||
int x_cell = x / cell_size; |
||||
int y_cell = y / cell_size; |
||||
|
||||
int x1 = x_cell - 1; |
||||
int y1 = y_cell - 1; |
||||
int x2 = x_cell + 1; |
||||
int y2 = y_cell + 1; |
||||
|
||||
// boundary check
|
||||
x1 = std::max(0, x1); |
||||
y1 = std::max(0, y1); |
||||
x2 = std::min(grid_width-1, x2); |
||||
y2 = std::min(grid_height-1, y2); |
||||
|
||||
for( int yy = y1; yy <= y2; yy++ ) |
||||
{ |
||||
for( int xx = x1; xx <= x2; xx++ ) |
||||
{ |
||||
vector <Point2f> &m = grid[yy*grid_width + xx]; |
||||
|
||||
if( m.size() ) |
||||
{ |
||||
for(j = 0; j < m.size(); j++) |
||||
{ |
||||
float dx = x - m[j].x; |
||||
float dy = y - m[j].y; |
||||
|
||||
if( dx*dx + dy*dy < minDistance ) |
||||
{ |
||||
good = false; |
||||
goto break_out; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
break_out: |
||||
|
||||
if(good) |
||||
{ |
||||
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y)); |
||||
|
||||
corners.push_back(Point2f((float)x, (float)y)); |
||||
++ncorners; |
||||
|
||||
if( maxCorners > 0 && (int)ncorners == maxCorners ) |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
for( i = 0; i < total; i++ ) |
||||
{ |
||||
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data); |
||||
int y = (int)(ofs / eig.step); |
||||
int x = (int)((ofs - y*eig.step)/sizeof(float)); |
||||
|
||||
corners.push_back(Point2f((float)x, (float)y)); |
||||
++ncorners; |
||||
if( maxCorners > 0 && (int)ncorners == maxCorners ) |
||||
break; |
||||
} |
||||
} |
||||
|
||||
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F); |
||||
|
||||
} |
||||
|
||||
/////////////////end of ref code//////////////////////////
|
||||
|
||||
|
||||
|
||||
class CV_GoodFeatureToTTest : public cvtest::ArrayTest |
||||
{ |
||||
public: |
||||
CV_GoodFeatureToTTest(); |
||||
|
||||
protected: |
||||
int prepare_test_case( int test_case_idx ); |
||||
void run_func(); |
||||
int validate_test_results( int test_case_idx ); |
||||
|
||||
int aperture_size; |
||||
Mat src, src_gray; |
||||
Mat src_gray32f, src_gray8U; |
||||
Mat mask; |
||||
|
||||
int maxCorners; |
||||
vector<Point2f> corners; |
||||
vector<Point2f> Refcorners; |
||||
double qualityLevel; |
||||
double minDistance; |
||||
int blockSize; |
||||
bool useHarrisDetector; |
||||
double k; |
||||
int SrcType; |
||||
}; |
||||
|
||||
|
||||
CV_GoodFeatureToTTest::CV_GoodFeatureToTTest() |
||||
{ |
||||
RNG& rng = ts->get_rng(); |
||||
maxCorners = rng.uniform( 50, 100 ); |
||||
qualityLevel = 0.01; |
||||
minDistance = 10; |
||||
blockSize = 3; |
||||
useHarrisDetector = false; |
||||
k = 0.04; |
||||
mask = Mat(); |
||||
test_case_count = 4; |
||||
|
||||
} |
||||
|
||||
int CV_GoodFeatureToTTest::prepare_test_case( int test_case_idx ) |
||||
{ |
||||
const static int types[] = { CV_32FC1, CV_8UC1 }; |
||||
|
||||
cvtest::TS& tst = *cvtest::TS::ptr(); |
||||
src = imread(string(tst.get_data_path()) + "shared/fruits.png", IMREAD_COLOR); |
||||
|
||||
CV_Assert(src.data != NULL); |
||||
|
||||
cvtColor( src, src_gray, CV_BGR2GRAY ); |
||||
SrcType = types[test_case_idx & 0x1]; |
||||
useHarrisDetector = test_case_idx & 2 ? true : false; |
||||
return 1; |
||||
} |
||||
|
||||
|
||||
void CV_GoodFeatureToTTest::run_func() |
||||
{ |
||||
int cn = src_gray.channels(); |
||||
|
||||
CV_Assert( cn == 1 ); |
||||
CV_Assert( ( CV_MAT_DEPTH(SrcType) == CV_32FC1 ) || ( CV_MAT_DEPTH(SrcType) == CV_8UC1 )); |
||||
|
||||
TEST_MESSAGEL (" maxCorners = ", maxCorners) |
||||
if (useHarrisDetector) |
||||
{ |
||||
TEST_MESSAGE (" useHarrisDetector = true\n"); |
||||
} |
||||
else |
||||
{ |
||||
TEST_MESSAGE (" useHarrisDetector = false\n"); |
||||
} |
||||
|
||||
if( CV_MAT_DEPTH(SrcType) == CV_32FC1) |
||||
{ |
||||
if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1); |
||||
else src_gray32f = src_gray.clone(); |
||||
|
||||
TEST_MESSAGE ("goodFeaturesToTrack 32f\n") |
||||
|
||||
goodFeaturesToTrack( src_gray32f, |
||||
corners, |
||||
maxCorners, |
||||
qualityLevel, |
||||
minDistance, |
||||
Mat(), |
||||
blockSize, |
||||
useHarrisDetector, |
||||
k ); |
||||
} |
||||
else |
||||
{ |
||||
if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1); |
||||
else src_gray8U = src_gray.clone(); |
||||
|
||||
TEST_MESSAGE ("goodFeaturesToTrack 8U\n") |
||||
|
||||
goodFeaturesToTrack( src_gray8U, |
||||
corners, |
||||
maxCorners, |
||||
qualityLevel, |
||||
minDistance, |
||||
Mat(), |
||||
blockSize, |
||||
useHarrisDetector, |
||||
k ); |
||||
} |
||||
} |
||||
|
||||
|
||||
int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx ) |
||||
{ |
||||
static const double eps = 2e-6; |
||||
|
||||
if( CV_MAT_DEPTH(SrcType) == CV_32FC1 ) |
||||
{ |
||||
if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1); |
||||
else src_gray32f = src_gray.clone(); |
||||
|
||||
TEST_MESSAGE ("test_goodFeaturesToTrack 32f\n") |
||||
|
||||
test_goodFeaturesToTrack( src_gray32f, |
||||
Refcorners, |
||||
maxCorners, |
||||
qualityLevel, |
||||
minDistance, |
||||
Mat(), |
||||
blockSize, |
||||
useHarrisDetector, |
||||
k ); |
||||
} |
||||
else |
||||
{ |
||||
if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1); |
||||
else src_gray8U = src_gray.clone(); |
||||
|
||||
TEST_MESSAGE ("test_goodFeaturesToTrack 8U\n") |
||||
|
||||
test_goodFeaturesToTrack( src_gray8U, |
||||
Refcorners, |
||||
maxCorners, |
||||
qualityLevel, |
||||
minDistance, |
||||
Mat(), |
||||
blockSize, |
||||
useHarrisDetector, |
||||
k ); |
||||
} |
||||
|
||||
double e =norm(corners, Refcorners); |
||||
|
||||
if (e > eps) |
||||
{ |
||||
TEST_MESSAGEL ("Number of features: Refcorners = ", Refcorners.size()) |
||||
TEST_MESSAGEL (" TestCorners = ", corners.size()) |
||||
TEST_MESSAGE ("\n") |
||||
|
||||
ts->printf(cvtest::TS::CONSOLE, "actual error: %g, expected: %g", e, eps); |
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
||||
|
||||
for(int i = 0; i < (int)std::min((unsigned int)(corners.size()), (unsigned int)(Refcorners.size())); i++){ |
||||
if ( (corners[i].x != Refcorners[i].x) || (corners[i].y != Refcorners[i].y)) |
||||
printf("i = %i X %2.2f Xref %2.2f Y %2.2f Yref %2.2f\n",i,corners[i].x,Refcorners[i].x,corners[i].y,Refcorners[i].y); |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
TEST_MESSAGEL (" Refcorners = ", Refcorners.size()) |
||||
TEST_MESSAGEL (" TestCorners = ", corners.size()) |
||||
TEST_MESSAGE ("\n") |
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK); |
||||
} |
||||
|
||||
return BaseTest::validate_test_results(test_case_idx); |
||||
|
||||
} |
||||
|
||||
TEST(Imgproc_GoodFeatureToT, accuracy) { CV_GoodFeatureToTTest test; test.safe_run(); } |
||||
|
||||
|
||||
/* End of file. */ |
Loading…
Reference in new issue