fixed build problems on Windows

pull/13383/head
Vadim Pisarevsky 14 years ago
parent e58de551c5
commit 9a991a2e10
  1. 6
      modules/core/include/opencv2/core/core.hpp
  2. 4
      modules/core/include/opencv2/core/operations.hpp
  3. 2
      modules/core/src/arithm.cpp
  4. 2
      modules/core/src/mathfuncs.cpp
  5. 4
      modules/core/src/matmul.cpp
  6. 12
      modules/imgproc/src/sumpixels.cpp
  7. 2
      modules/imgproc/test/test_histograms.cpp
  8. 12
      modules/imgproc/test/test_imgwarp.cpp
  9. BIN
      modules/python/hdr_parser.pyc
  10. 2
      modules/video/include/opencv2/video/background_segm.hpp
  11. 2
      samples/cpp/brief_match_test.cpp
  12. 2
      samples/cpp/kmeans.cpp
  13. 2
      samples/cpp/stereo_calib.cpp
  14. 2
      samples/cpp/stereo_match.cpp
  15. 2
      samples/cpp/video_homography.cpp
  16. 4
      samples/gpu/morfology.cpp
  17. 58
      samples/gpu/performance/tests.cpp

@ -4117,7 +4117,8 @@ public:
int index;
};
#if 0
class CV_EXPORTS AlgorithmImpl;
/*!
@ -4163,7 +4164,8 @@ protected:
Ptr<AlgorithmImpl> impl;
};
#endif
}
#endif // __cplusplus

@ -3558,7 +3558,7 @@ template<typename _Tp> static inline std::ostream& operator << (std::ostream& ou
return out;
}
template<typename _Tp> struct AlgorithmParamType {};
/*template<typename _Tp> struct AlgorithmParamType {};
template<> struct AlgorithmParamType<int> { enum { type = CV_PARAM_TYPE_INT }; };
template<> struct AlgorithmParamType<double> { enum { type = CV_PARAM_TYPE_REAL }; };
template<> struct AlgorithmParamType<string> { enum { type = CV_PARAM_TYPE_STRING }; };
@ -3600,7 +3600,7 @@ template<typename _Tp> void Algorithm::addParam(int propId, _Tp& value, bool rea
template<typename _Tp> void Algorithm::setParamRange(int propId, const _Tp& minVal, const _Tp& maxVal)
{
setParamRange_(propId, AlgorithmParamType<_Tp>::type, &minVal, &maxVal);
}
}*/
}

@ -2271,7 +2271,7 @@ void cv::inRange(const InputArray& _src, const InputArray& _lowerb,
BinaryFunc sccvtfunc = getConvertFunc(scdepth, CV_32S);
sccvtfunc(lb.data, 0, 0, 0, (uchar*)ilbuf, 0, Size(cn, 1), 0);
sccvtfunc(ub.data, 0, 0, 0, (uchar*)iubuf, 0, Size(cn, 1), 0);
int minval = getMinVal(depth), maxval = getMaxVal(depth);
int minval = cvRound(getMinVal(depth)), maxval = cvRound(getMaxVal(depth));
for( int k = 0; k < cn; k++ )
{

@ -115,7 +115,7 @@ static void FastAtan2_32f(const float *Y, const float *X, float *angle, int len,
a = (y >= 0 ? CV_PI*0.5 : CV_PI*1.5) -
x*y*(y2 + 0.43157974*x2)/(y2*y2 + x2*(0.76443945*y2 + 0.05831938*x2) + (float)DBL_EPSILON);
}
angle[i] = a*scale;
angle[i] = (float)(a*scale);
}
}

@ -1665,7 +1665,7 @@ diagtransform_( const T* src, T* dst, const WT* m, int len, int cn, int )
{
const WT* _m = m;
for( int j = 0; j < cn; j++, _m += cn + 1 )
dst[j] = src[j]*_m[j] + _m[cn];
dst[j] = saturate_cast<T>(src[j]*_m[j] + _m[cn]);
}
}
}
@ -2600,7 +2600,7 @@ static double dotProd_8u(const uchar* src1, const uchar* src2, int len)
__m128i z = _mm_setzero_si128();
while( i < len0 )
{
blockSize = std::min(len0 - j, blockSize0);
blockSize = std::min(len0 - i, blockSize0);
__m128i s = _mm_setzero_si128();
for( j = 0; j <= blockSize - 16; j += 16 )
{

@ -46,16 +46,16 @@ namespace cv
{
template<typename T, typename ST, typename QT>
void integral_( const T* src, size_t srcstep, ST* sum, size_t sumstep,
QT* sqsum, size_t sqsumstep, ST* tilted, size_t tiltedstep,
void integral_( const T* src, size_t _srcstep, ST* sum, size_t _sumstep,
QT* sqsum, size_t _sqsumstep, ST* tilted, size_t _tiltedstep,
Size size, int cn )
{
int x, y, k;
srcstep /= sizeof(T);
sumstep /= sizeof(ST);
tiltedstep /= sizeof(ST);
sqsumstep /= sizeof(QT);
int srcstep = (int)(_srcstep/sizeof(T));
int sumstep = (int)(_sumstep/sizeof(ST));
int tiltedstep = (int)(_tiltedstep/sizeof(ST));
int sqsumstep = (int)(_sqsumstep/sizeof(QT));
size.width *= cn;

@ -1509,7 +1509,7 @@ cvTsCalcBackProject( IplImage** images, IplImage* dst, CvHistogram* hist, int* c
}
int CV_CalcBackProjectTest::validate_test_results( int test_case_idx )
int CV_CalcBackProjectTest::validate_test_results( int /*test_case_idx*/ )
{
int code = cvtest::TS::OK;

@ -629,12 +629,12 @@ int CV_WarpPerspectiveTest::prepare_test_case( int test_case_idx )
s[0] = Point2f(0,0);
d[0] = Point2f(0,0);
s[1] = Point2f(src.cols-1,0);
d[1] = Point2f(dst.cols-1,0);
s[2] = Point2f(src.cols-1,src.rows-1);
d[2] = Point2f(dst.cols-1,dst.rows-1);
s[3] = Point2f(0,src.rows-1);
d[3] = Point2f(0,dst.rows-1);
s[1] = Point2f(src.cols-1.f,0);
d[1] = Point2f(dst.cols-1.f,0);
s[2] = Point2f(src.cols-1.f,src.rows-1.f);
d[2] = Point2f(dst.cols-1.f,dst.rows-1.f);
s[3] = Point2f(0,src.rows-1.f);
d[3] = Point2f(0,dst.rows-1.f);
float buf[16];
Mat tmp( 1, 16, CV_32FC1, buf );

Binary file not shown.

@ -400,7 +400,7 @@ public:
};
class BackgroundSubtractorMOG2 : public BackgroundSubtractor
class CV_EXPORTS BackgroundSubtractorMOG2 : public BackgroundSubtractor
{
public:
//! the default constructor

@ -118,7 +118,7 @@ int main(int ac, char ** av)
vector<Point2f> mpts_1, mpts_2;
matches2points(matches_popcount, kpts_1, kpts_2, mpts_1, mpts_2); //Extract a list of the (x,y) location of the matches
vector<uchar> outlier_mask;
Mat H = findHomography(Mat(mpts_2), Mat(mpts_1), outlier_mask, RANSAC, 1);
Mat H = findHomography(mpts_2, mpts_1, RANSAC, 1, outlier_mask);
Mat outimg;
drawMatches(im2, kpts_2, im1, kpts_1, matches_popcount, outimg, Scalar::all(-1), Scalar::all(-1),

@ -54,7 +54,7 @@ int main( int /*argc*/, char** /*argv*/ )
kmeans(points, clusterCount, labels,
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0),
3, KMEANS_PP_CENTERS, &centers);
3, KMEANS_PP_CENTERS, centers);
img = Scalar::all(0);

@ -230,7 +230,7 @@ StereoCalib(const vector<string>& imagelist, Size boardSize, bool useCalibrated=
stereoRectify(cameraMatrix[0], distCoeffs[0],
cameraMatrix[1], distCoeffs[1],
imageSize, R, T, R1, R2, P1, P2, Q,
1, imageSize, &validRoi[0], &validRoi[1]);
CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);
fs.open("extrinsics.yml", CV_STORAGE_WRITE);
if( fs.isOpened() )

@ -178,7 +178,7 @@ int main(int argc, char** argv)
fs["R"] >> R;
fs["T"] >> T;
stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, -1, img_size, &roi1, &roi2 );
stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2 );
Mat map11, map12, map21, map22;
initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map11, map12);

@ -182,7 +182,7 @@ int main(int ac, char ** av)
if (matches.size() > 5)
{
Mat H = findHomography(Mat(train_pts), Mat(query_pts), match_mask, RANSAC, 4);
Mat H = findHomography(train_pts, query_pts, RANSAC, 4, match_mask);
if (countNonZero(Mat(match_mask)) > 15)
{
H_prev = H;

@ -41,7 +41,7 @@ void OpenClose(int, void*)
cv::gpu::morphologyEx(src, dst, CV_MOP_OPEN, element);
else
cv::gpu::morphologyEx(src, dst, CV_MOP_CLOSE, element);
imshow("Open/Close",dst);
imshow("Open/Close",(Mat)dst);
}
// callback function for erode/dilate trackbar
@ -54,7 +54,7 @@ void ErodeDilate(int, void*)
cv::gpu::erode(src, dst, element);
else
cv::gpu::dilate(src, dst, element);
imshow("Erode/Dilate",dst);
imshow("Erode/Dilate",(Mat)dst);
}

@ -784,10 +784,10 @@ TEST(projectPoints)
void InitSolvePnpRansac()
{
Mat object; gen(object, 1, 4, CV_32FC3, Scalar::all(0), Scalar::all(100));
Mat image; gen(image, 1, 4, CV_32FC2, Scalar::all(0), Scalar::all(100));
Mat rvec, tvec;
{
Mat object; gen(object, 1, 4, CV_32FC3, Scalar::all(0), Scalar::all(100));
Mat image; gen(image, 1, 4, CV_32FC2, Scalar::all(0), Scalar::all(100));
Mat rvec, tvec;
gpu::solvePnPRansac(object, image, Mat::eye(3, 3, CV_32F), Mat(), rvec, tvec);
}
@ -796,31 +796,31 @@ TEST(solvePnPRansac)
{
InitSolvePnpRansac();
for (int num_points = 5000; num_points <= 300000; num_points = int(num_points * 3.76))
{
SUBTEST << "num_points " << num_points;
Mat object; gen(object, 1, num_points, CV_32FC3, Scalar::all(10), Scalar::all(100));
Mat image; gen(image, 1, num_points, CV_32FC2, Scalar::all(10), Scalar::all(100));
Mat camera_mat; gen(camera_mat, 3, 3, CV_32F, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
Mat rvec, tvec;
const int num_iters = 200;
const float max_dist = 2.0f;
vector<int> inliers_cpu, inliers_gpu;
CPU_ON;
solvePnPRansac(object, image, camera_mat, Mat(), rvec, tvec, false, num_iters,
max_dist, int(num_points * 0.05), &inliers_cpu);
CPU_OFF;
GPU_ON;
gpu::solvePnPRansac(object, image, camera_mat, Mat(), rvec, tvec, false, num_iters,
max_dist, int(num_points * 0.05), &inliers_gpu);
for (int num_points = 5000; num_points <= 300000; num_points = int(num_points * 3.76))
{
SUBTEST << "num_points " << num_points;
Mat object; gen(object, 1, num_points, CV_32FC3, Scalar::all(10), Scalar::all(100));
Mat image; gen(image, 1, num_points, CV_32FC2, Scalar::all(10), Scalar::all(100));
Mat camera_mat; gen(camera_mat, 3, 3, CV_32F, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
Mat rvec, tvec;
const int num_iters = 200;
const float max_dist = 2.0f;
vector<int> inliers_cpu, inliers_gpu;
CPU_ON;
solvePnPRansac(object, image, camera_mat, Mat(), rvec, tvec, false, num_iters,
max_dist, int(num_points * 0.05), inliers_cpu);
CPU_OFF;
GPU_ON;
gpu::solvePnPRansac(object, image, camera_mat, Mat(), rvec, tvec, false, num_iters,
max_dist, int(num_points * 0.05), &inliers_gpu);
GPU_OFF;
}
}
Loading…
Cancel
Save