Merge pull request #3057 from Adil-Ibragimov:adding-constness

pull/3066/head
Vadim Pisarevsky 10 years ago
commit 99eed2d885
  1. 8
      modules/core/include/opencv2/core/cuda.hpp
  2. 26
      modules/core/include/opencv2/core/mat.hpp
  3. 24
      modules/core/include/opencv2/core/mat.inl.hpp
  4. 12
      modules/core/src/dxt.cpp
  5. 26
      modules/core/src/lapack.cpp
  6. 28
      modules/core/src/matrix.cpp
  7. 8
      modules/core/src/stat.cpp
  8. 2
      modules/core/src/umatrix.cpp
  9. 16
      modules/features2d/src/brisk.cpp
  10. 6
      modules/imgcodecs/src/grfmt_jpeg2000.cpp
  11. 2
      modules/imgproc/test/test_filter.cpp
  12. 2
      modules/imgproc/test/test_imgwarp.cpp
  13. 2
      modules/imgproc/test/test_imgwarp_strict.cpp

@ -261,8 +261,8 @@ public:
int* refcount;
//! helper fields used in locateROI and adjustROI
uchar* datastart;
uchar* dataend;
const uchar* datastart;
const uchar* dataend;
//! allocator
Allocator* allocator;
@ -349,8 +349,8 @@ public:
uchar* data;
int* refcount;
uchar* datastart;
uchar* dataend;
const uchar* datastart;
const uchar* dataend;
AllocType alloc_type;
};

@ -395,7 +395,7 @@ struct CV_EXPORTS UMatData
struct CV_EXPORTS UMatDataAutoLock
{
UMatDataAutoLock(UMatData* u);
explicit UMatDataAutoLock(UMatData* u);
~UMatDataAutoLock();
UMatData* u;
};
@ -403,7 +403,7 @@ struct CV_EXPORTS UMatDataAutoLock
struct CV_EXPORTS MatSize
{
MatSize(int* _p);
explicit MatSize(int* _p);
Size operator()() const;
const int& operator[](int i) const;
int& operator[](int i);
@ -417,7 +417,7 @@ struct CV_EXPORTS MatSize
struct CV_EXPORTS MatStep
{
MatStep();
MatStep(size_t s);
explicit MatStep(size_t s);
const size_t& operator[](int i) const;
size_t& operator[](int i);
operator size_t() const;
@ -918,9 +918,9 @@ public:
uchar* data;
//! helper fields used in locateROI and adjustROI
uchar* datastart;
uchar* dataend;
uchar* datalimit;
const uchar* datastart;
const uchar* dataend;
const uchar* datalimit;
//! custom allocator
MatAllocator* allocator;
@ -1804,9 +1804,9 @@ public:
//! copy operator
MatConstIterator& operator = (const MatConstIterator& it);
//! returns the current matrix element
uchar* operator *() const;
const uchar* operator *() const;
//! returns the i-th matrix element, relative to the current
uchar* operator [](ptrdiff_t i) const;
const uchar* operator [](ptrdiff_t i) const;
//! shifts the iterator forward by the specified number of elements
MatConstIterator& operator += (ptrdiff_t ofs);
@ -1831,9 +1831,9 @@ public:
const Mat* m;
size_t elemSize;
uchar* ptr;
uchar* sliceStart;
uchar* sliceEnd;
const uchar* ptr;
const uchar* sliceStart;
const uchar* sliceEnd;
};
@ -1917,9 +1917,9 @@ public:
//! constructor that sets the iterator to the specified element of the matrix
MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0);
//! constructor that sets the iterator to the specified element of the matrix
MatIterator_(const Mat_<_Tp>* _m, Point _pt);
MatIterator_(Mat_<_Tp>* _m, Point _pt);
//! constructor that sets the iterator to the specified element of the matrix
MatIterator_(const Mat_<_Tp>* _m, const int* _idx);
MatIterator_(Mat_<_Tp>* _m, const int* _idx);
//! copy constructor
MatIterator_(const MatIterator_& it);
//! copy operator

@ -438,7 +438,7 @@ Mat::Mat(const std::vector<_Tp>& vec, bool copyData)
if( !copyData )
{
step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&vec[0];
datastart = data = (uchar*)&vec[0];
datalimit = dataend = datastart + rows * step[0];
}
else
@ -453,7 +453,7 @@ Mat::Mat(const Vec<_Tp, n>& vec, bool copyData)
if( !copyData )
{
step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)vec.val;
datastart = data = (uchar*)vec.val;
datalimit = dataend = datastart + rows * step[0];
}
else
@ -470,7 +470,7 @@ Mat::Mat(const Matx<_Tp,m,n>& M, bool copyData)
{
step[0] = cols * sizeof(_Tp);
step[1] = sizeof(_Tp);
data = datastart = (uchar*)M.val;
datastart = data = (uchar*)M.val;
datalimit = dataend = datastart + rows * step[0];
}
else
@ -485,7 +485,7 @@ Mat::Mat(const Point_<_Tp>& pt, bool copyData)
if( !copyData )
{
step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&pt.x;
datastart = data = (uchar*)&pt.x;
datalimit = dataend = datastart + rows * step[0];
}
else
@ -504,7 +504,7 @@ Mat::Mat(const Point3_<_Tp>& pt, bool copyData)
if( !copyData )
{
step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&pt.x;
datastart = data = (uchar*)&pt.x;
datalimit = dataend = datastart + rows * step[0];
}
else
@ -642,7 +642,7 @@ inline void Mat::release()
if( u && CV_XADD(&u->refcount, -1) == 1 )
deallocate();
u = NULL;
data = datastart = dataend = datalimit = 0;
datastart = dataend = datalimit = data = 0;
size.p[0] = 0;
}
@ -1044,7 +1044,7 @@ void Mat::push_back(const _Tp& elem)
}
CV_Assert(DataType<_Tp>::type == type() && cols == 1
/* && dims == 2 (cols == 1 implies dims == 2) */);
uchar* tmp = dataend + step[0];
const uchar* tmp = dataend + step[0];
if( !isSubmatrix() && isContinuous() && tmp <= datalimit )
{
*(_Tp*)(data + (size.p[0]++) * step.p[0]) = elem;
@ -2148,7 +2148,7 @@ MatConstIterator& MatConstIterator::operator = (const MatConstIterator& it )
}
inline
uchar* MatConstIterator::operator *() const
const uchar* MatConstIterator::operator *() const
{
return ptr;
}
@ -2281,7 +2281,7 @@ MatConstIterator operator - (const MatConstIterator& a, ptrdiff_t ofs)
inline
uchar* MatConstIterator::operator [](ptrdiff_t i) const
const uchar* MatConstIterator::operator [](ptrdiff_t i) const
{
return *(*this + i);
}
@ -2453,12 +2453,12 @@ MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, int _row, int _col)
{}
template<typename _Tp> inline
MatIterator_<_Tp>::MatIterator_(const Mat_<_Tp>* _m, Point _pt)
MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, Point _pt)
: MatConstIterator_<_Tp>(_m, _pt)
{}
template<typename _Tp> inline
MatIterator_<_Tp>::MatIterator_(const Mat_<_Tp>* _m, const int* _idx)
MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, const int* _idx)
: MatConstIterator_<_Tp>(_m, _idx)
{}
@ -2592,7 +2592,7 @@ inline SparseMatConstIterator& SparseMatConstIterator::operator = (const SparseM
template<typename _Tp> inline
const _Tp& SparseMatConstIterator::value() const
{
return *(_Tp*)ptr;
return *(const _Tp*)ptr;
}
inline

@ -2635,8 +2635,8 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
for( i = 0; i < nonzero_rows; i++ )
{
uchar* sptr = src.data + i*src.step;
uchar* dptr0 = dst.data + i*dst.step;
const uchar* sptr = src.ptr(i);
uchar* dptr0 = dst.ptr(i);
uchar* dptr = dptr0;
if( tmp_buf )
@ -2649,7 +2649,7 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
for( ; i < count; i++ )
{
uchar* dptr0 = dst.data + i*dst.step;
uchar* dptr0 = dst.ptr(i);
memset( dptr0, 0, dst_full_len );
}
@ -2661,7 +2661,7 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
{
int a = 0, b = count;
uchar *buf0, *buf1, *dbuf0, *dbuf1;
uchar* sptr0 = src.data;
const uchar* sptr0 = src.data;
uchar* dptr0 = dst.data;
buf0 = ptr;
ptr += len*complex_elem_size;
@ -2800,7 +2800,7 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
int n = dst.cols;
if( elem_size == (int)sizeof(float) )
{
float* p0 = (float*)dst.data;
float* p0 = dst.ptr<float>();
size_t dstep = dst.step/sizeof(p0[0]);
for( i = 0; i < len; i++ )
{
@ -2816,7 +2816,7 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
}
else
{
double* p0 = (double*)dst.data;
double* p0 = dst.ptr<double>();
size_t dstep = dst.step/sizeof(p0[0]);
for( i = 0; i < len; i++ )
{

@ -955,10 +955,10 @@ double cv::invert( InputArray _src, OutputArray _dst, int method )
SVD::compute(src, w, u, vt);
SVD::backSubst(w, u, vt, Mat(), _dst);
return type == CV_32F ?
(((float*)w.data)[0] >= FLT_EPSILON ?
((float*)w.data)[n-1]/((float*)w.data)[0] : 0) :
(((double*)w.data)[0] >= DBL_EPSILON ?
((double*)w.data)[n-1]/((double*)w.data)[0] : 0);
(w.ptr<float>()[0] >= FLT_EPSILON ?
w.ptr<float>()[n-1]/w.ptr<float>()[0] : 0) :
(w.ptr<double>()[0] >= DBL_EPSILON ?
w.ptr<double>()[n-1]/w.ptr<double>()[0] : 0);
}
CV_Assert( m == n );
@ -975,10 +975,10 @@ double cv::invert( InputArray _src, OutputArray _dst, int method )
transpose(vt, u);
SVD::backSubst(w, u, vt, Mat(), _dst);
return type == CV_32F ?
(((float*)w.data)[0] >= FLT_EPSILON ?
((float*)w.data)[n-1]/((float*)w.data)[0] : 0) :
(((double*)w.data)[0] >= DBL_EPSILON ?
((double*)w.data)[n-1]/((double*)w.data)[0] : 0);
(w.ptr<float>()[0] >= FLT_EPSILON ?
w.ptr<float>()[n-1]/w.ptr<float>()[0] : 0) :
(w.ptr<double>()[0] >= DBL_EPSILON ?
w.ptr<double>()[n-1]/w.ptr<double>()[0] : 0);
}
CV_Assert( method == DECOMP_LU || method == DECOMP_CHOLESKY );
@ -988,7 +988,7 @@ double cv::invert( InputArray _src, OutputArray _dst, int method )
if( n <= 3 )
{
uchar* srcdata = src.data;
const uchar* srcdata = src.data;
uchar* dstdata = dst.data;
size_t srcstep = src.step;
size_t dststep = dst.step;
@ -1212,8 +1212,8 @@ bool cv::solve( InputArray _src, InputArray _src2arg, OutputArray _dst, int meth
#define bf(y) ((float*)(bdata + y*src2step))[0]
#define bd(y) ((double*)(bdata + y*src2step))[0]
uchar* srcdata = src.data;
uchar* bdata = _src2.data;
const uchar* srcdata = src.data;
const uchar* bdata = _src2.data;
uchar* dstdata = dst.data;
size_t srcstep = src.step;
size_t src2step = _src2.step;
@ -1709,7 +1709,7 @@ cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
eigen(src, evals, evects);
if( evects0.data != evects.data )
{
uchar* p = evects0.data;
const uchar* p = evects0.data;
evects.convertTo(evects0, evects0.type());
CV_Assert( p == evects0.data );
}
@ -1718,7 +1718,7 @@ cvEigenVV( CvArr* srcarr, CvArr* evectsarr, CvArr* evalsarr, double,
eigen(src, evals);
if( evals0.data != evals.data )
{
uchar* p = evals0.data;
const uchar* p = evals0.data;
if( evals0.size() == evals.size() )
evals.convertTo(evals0, evals0.type());
else if( evals0.type() == evals.type() )

@ -346,7 +346,7 @@ static void finalizeHdr(Mat& m)
if( d > 2 )
m.rows = m.cols = -1;
if(m.u)
m.data = m.datastart = m.u->data;
m.datastart = m.data = m.u->data;
if( m.data )
{
m.datalimit = m.datastart + m.size[0]*m.step[0];
@ -510,7 +510,7 @@ Mat::Mat(int _dims, const int* _sizes, int _type, void* _data, const size_t* _st
datalimit(0), allocator(0), u(0), size(&rows)
{
flags |= CV_MAT_TYPE(_type);
data = datastart = (uchar*)_data;
datastart = data = (uchar*)_data;
setSize(*this, _dims, _sizes, _steps, true);
finalizeHdr(*this);
}
@ -549,7 +549,7 @@ static Mat cvMatNDToMat(const CvMatND* m, bool copyData)
if( !m )
return thiz;
thiz.data = thiz.datastart = m->data.ptr;
thiz.datastart = thiz.data = m->data.ptr;
thiz.flags |= CV_MAT_TYPE(m->type);
int _sizes[CV_MAX_DIM];
size_t _steps[CV_MAX_DIM];
@ -587,7 +587,7 @@ static Mat cvMatToMat(const CvMat* m, bool copyData)
thiz.dims = 2;
thiz.rows = m->rows;
thiz.cols = m->cols;
thiz.data = thiz.datastart = m->data.ptr;
thiz.datastart = thiz.data = m->data.ptr;
size_t esz = CV_ELEM_SIZE(m->type), minstep = thiz.cols*esz, _step = m->step;
if( _step == 0 )
_step = minstep;
@ -597,7 +597,7 @@ static Mat cvMatToMat(const CvMat* m, bool copyData)
}
else
{
thiz.data = thiz.datastart = thiz.dataend = 0;
thiz.datastart = thiz.dataend = thiz.data = 0;
Mat(m->rows, m->cols, m->type, m->data.ptr, m->step).copyTo(thiz);
}
@ -636,7 +636,7 @@ static Mat iplImageToMat(const IplImage* img, bool copyData)
m.rows = img->roi->height;
m.cols = img->roi->width;
esz = CV_ELEM_SIZE(m.flags);
m.data = m.datastart = (uchar*)img->imageData +
m.datastart = m.data = (uchar*)img->imageData +
(selectedPlane ? (img->roi->coi - 1)*m.step*img->height : 0) +
img->roi->yOffset*m.step[0] + img->roi->xOffset*esz;
}
@ -5532,14 +5532,14 @@ double norm( const SparseMat& src, int normType )
{
if( normType == NORM_INF )
for( i = 0; i < N; i++, ++it )
result = std::max(result, std::abs((double)*(const float*)it.ptr));
result = std::max(result, std::abs((double)it.value<float>()));
else if( normType == NORM_L1 )
for( i = 0; i < N; i++, ++it )
result += std::abs(*(const float*)it.ptr);
result += std::abs(it.value<float>());
else
for( i = 0; i < N; i++, ++it )
{
double v = *(const float*)it.ptr;
double v = it.value<float>();
result += v*v;
}
}
@ -5547,14 +5547,14 @@ double norm( const SparseMat& src, int normType )
{
if( normType == NORM_INF )
for( i = 0; i < N; i++, ++it )
result = std::max(result, std::abs(*(const double*)it.ptr));
result = std::max(result, std::abs(it.value<double>()));
else if( normType == NORM_L1 )
for( i = 0; i < N; i++, ++it )
result += std::abs(*(const double*)it.ptr);
result += std::abs(it.value<double>());
else
for( i = 0; i < N; i++, ++it )
{
double v = *(const double*)it.ptr;
double v = it.value<double>();
result += v*v;
}
}
@ -5578,7 +5578,7 @@ void minMaxLoc( const SparseMat& src, double* _minval, double* _maxval, int* _mi
float minval = FLT_MAX, maxval = -FLT_MAX;
for( i = 0; i < N; i++, ++it )
{
float v = *(const float*)it.ptr;
float v = it.value<float>();
if( v < minval )
{
minval = v;
@ -5600,7 +5600,7 @@ void minMaxLoc( const SparseMat& src, double* _minval, double* _maxval, int* _mi
double minval = DBL_MAX, maxval = -DBL_MAX;
for( i = 0; i < N; i++, ++it )
{
double v = *(const double*)it.ptr;
double v = it.value<double>();
if( v < minval )
{
minval = v;

@ -782,7 +782,7 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
int type = src.type();
if( !mask.empty() )
{
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC1)(const void *, int, void *, int, IppiSize, Ipp64f *);
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *);
ippiMaskMeanFuncC1 ippFuncC1 =
type == CV_8UC1 ? (ippiMaskMeanFuncC1)ippiMean_8u_C1MR :
type == CV_16UC1 ? (ippiMaskMeanFuncC1)ippiMean_16u_C1MR :
@ -795,7 +795,7 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
return Scalar(res);
setIppErrorStatus();
}
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC3)(const void *, int, void *, int, IppiSize, int, Ipp64f *);
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *);
ippiMaskMeanFuncC3 ippFuncC3 =
type == CV_8UC3 ? (ippiMaskMeanFuncC3)ippiMean_8u_C3CMR :
type == CV_16UC3 ? (ippiMaskMeanFuncC3)ippiMean_16u_C3CMR :
@ -1071,7 +1071,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
int type = src.type();
if( !mask.empty() )
{
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC1)(const void *, int, void *, int, IppiSize, Ipp64f *, Ipp64f *);
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *, Ipp64f *);
ippiMaskMeanStdDevFuncC1 ippFuncC1 =
type == CV_8UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_8u_C1MR :
type == CV_16UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_16u_C1MR :
@ -1083,7 +1083,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
return;
setIppErrorStatus();
}
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC3)(const void *, int, void *, int, IppiSize, int, Ipp64f *, Ipp64f *);
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *, Ipp64f *);
ippiMaskMeanStdDevFuncC3 ippFuncC3 =
type == CV_8UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CMR :
type == CV_16UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CMR :

@ -582,7 +582,7 @@ Mat UMat::getMat(int accessFlags) const
hdr.flags = flags;
hdr.u = u;
hdr.datastart = u->data;
hdr.data = hdr.datastart + offset;
hdr.data = u->data + offset;
hdr.datalimit = hdr.dataend = u->data + u->size;
CV_XADD(&hdr.u->refcount, 1);
return hdr;

@ -427,7 +427,7 @@ BRISK::smoothedIntensity(const cv::Mat& image, const cv::Mat& integral, const fl
if (dx + dy > 2)
{
// now the calculation:
uchar* ptr = image.data + x_left + imagecols * y_top;
const uchar* ptr = image.data + x_left + imagecols * y_top;
// first the corners:
ret_val = A * int(*ptr);
ptr += dx + 1;
@ -475,7 +475,7 @@ BRISK::smoothedIntensity(const cv::Mat& image, const cv::Mat& integral, const fl
}
// now the calculation:
uchar* ptr = image.data + x_left + imagecols * y_top;
const uchar* ptr = image.data + x_left + imagecols * y_top;
// first row:
ret_val = A * int(*ptr);
ptr++;
@ -487,7 +487,7 @@ BRISK::smoothedIntensity(const cv::Mat& image, const cv::Mat& integral, const fl
ret_val += B * int(*ptr);
// middle ones:
ptr += imagecols - dx - 1;
uchar* end_j = ptr + dy * imagecols;
const uchar* end_j = ptr + dy * imagecols;
for (; ptr < end_j; ptr += imagecols - dx - 1)
{
ret_val += r_x_1_i * int(*ptr);
@ -607,7 +607,7 @@ BRISK::computeDescriptorsAndOrOrientation(InputArray _image, InputArray _mask, s
int t2;
// the feature orientation
uchar* ptr = descriptors.data;
const uchar* ptr = descriptors.data;
for (size_t k = 0; k < ksize; k++)
{
cv::KeyPoint& kp = keypoints[k];
@ -1070,7 +1070,7 @@ BriskScaleSpace::isMax2D(const int layer, const int x_layer, const int y_layer)
{
const cv::Mat& scores = pyramid_[layer].scores();
const int scorescols = scores.cols;
uchar* data = scores.data + y_layer * scorescols + x_layer;
const uchar* data = scores.data + y_layer * scorescols + x_layer;
// decision tree:
const uchar center = (*data);
data--;
@ -2140,7 +2140,7 @@ BriskLayer::value(const cv::Mat& mat, float xf, float yf, float scale_in) const
const int r_y = (int)((yf - y) * 1024);
const int r_x_1 = (1024 - r_x);
const int r_y_1 = (1024 - r_y);
uchar* ptr = image.data + x + y * imagecols;
const uchar* ptr = image.data + x + y * imagecols;
// just interpolate:
ret_val = (r_x_1 * r_y_1 * int(*ptr));
ptr++;
@ -2186,7 +2186,7 @@ BriskLayer::value(const cv::Mat& mat, float xf, float yf, float scale_in) const
const int r_y1_i = (int)(r_y1 * scaling);
// now the calculation:
uchar* ptr = image.data + x_left + imagecols * y_top;
const uchar* ptr = image.data + x_left + imagecols * y_top;
// first row:
ret_val = A * int(*ptr);
ptr++;
@ -2198,7 +2198,7 @@ BriskLayer::value(const cv::Mat& mat, float xf, float yf, float scale_in) const
ret_val += B * int(*ptr);
// middle ones:
ptr += imagecols - dx - 1;
uchar* end_j = ptr + dy * imagecols;
const uchar* end_j = ptr + dy * imagecols;
for (; ptr < end_j; ptr += imagecols - dx - 1)
{
ret_val += r_x_1_i * int(*ptr);

@ -154,7 +154,7 @@ bool Jpeg2KDecoder::readData( Mat& img )
{
bool result = false;
int color = img.channels() > 1;
uchar* data = img.data;
uchar* data = img.ptr();
int step = (int)img.step;
jas_stream_t* stream = (jas_stream_t*)m_stream;
jas_image_t* image = (jas_image_t*)m_image;
@ -478,7 +478,7 @@ bool Jpeg2KEncoder::writeComponent8u( void *__img, const Mat& _img )
for( int y = 0; y < h; y++ )
{
uchar* data = _img.data + _img.step*y;
const uchar* data = _img.ptr(y);
for( int i = 0; i < ncmpts; i++ )
{
for( int x = 0; x < w; x++)
@ -502,7 +502,7 @@ bool Jpeg2KEncoder::writeComponent16u( void *__img, const Mat& _img )
for( int y = 0; y < h; y++ )
{
uchar* data = _img.data + _img.step*y;
const uchar* data = _img.ptr(y);
for( int i = 0; i < ncmpts; i++ )
{
for( int x = 0; x < w; x++)

@ -228,7 +228,7 @@ int CV_MorphologyBaseTest::prepare_test_case( int test_case_idx )
if( shape == CV_SHAPE_CUSTOM )
{
eldata.resize(aperture_size.width*aperture_size.height);
uchar* src = test_mat[INPUT][1].data;
const uchar* src = test_mat[INPUT][1].data;
int srcstep = (int)test_mat[INPUT][1].step;
int i, j, nonzero = 0;

@ -344,7 +344,7 @@ static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& ma
int x, y, k;
int drows = dst.rows, dcols = dst.cols;
int srows = src.rows, scols = src.cols;
uchar* sptr0 = src.data;
const uchar* sptr0 = src.data;
int depth = src.depth(), cn = src.channels();
int elem_size = (int)src.elemSize();
int step = (int)(src.step / CV_ELEM_SIZE(depth));

@ -532,7 +532,7 @@ void CV_Resize_Test::resize_1d(const Mat& _src, Mat& _dst, int dy, const dim& _d
ofs = 3, ksize = 8;
Mat _extended_src_row(1, _src.cols + ksize * 2, _src.type());
uchar* srow = _src.data + dy * _src.step;
const uchar* srow = _src.ptr(dy);
memcpy(_extended_src_row.data + elemsize * ksize, srow, _src.step);
for (int k = 0; k < ksize; ++k)
{

Loading…
Cancel
Save