Merge pull request #10717 from pengli:dnn

pull/10732/head
Alexander Alekhin 7 years ago
commit 9698b93d10
  1. 2
      modules/dnn/src/layers/batch_norm_layer.cpp
  2. 54
      modules/dnn/src/layers/eltwise_layer.cpp
  3. 76
      modules/dnn/src/layers/mvn_layer.cpp
  4. 49
      modules/dnn/src/layers/slice_layer.cpp
  5. 98
      modules/dnn/src/opencl/eltwise.cl
  6. 180
      modules/dnn/src/opencl/mvn.cl
  7. 87
      modules/dnn/src/opencl/slice.cl
  8. 12
      modules/dnn/test/test_layers.cpp

@ -144,7 +144,7 @@ public:
UMat src = inputs[ii].reshape(1, s.size(), &s[0]);
UMat dst = outputs[ii].reshape(1, s.size(), &s[0]);
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
String buildopt = format("-DNUM=%d ", number);
String buildopt = format("-DNUM=%d", number);
String kname = format("batch_norm%d", number);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::batchnorm_oclsrc, buildopt);
if (kernel.empty())

@ -43,6 +43,7 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include "opencl_kernels_dnn.hpp"
namespace cv
{
@ -271,22 +272,47 @@ public:
switch (op)
{
case SUM:
if (coeffs.empty())
{
add(inputs[0], inputs[1], outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
add(outputs[0], inputs[i], outputs[0]);
}
else
{
UMat mul0, mul1;
multiply(coeffs[0], inputs[0], mul0);
multiply(coeffs[1], inputs[1], mul1);
add(mul0, mul1, outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
int channels = total(shape(outputs[0]), 0, 2);
int plane_size = total(shape(outputs[0]), 2);
if (channels % 4 == 0 && plane_size % 4 == 0)
{
size_t localsize[] = { 128 };
size_t globalsize[] = { (size_t)channels / 4 * localsize[0] };
for (int i = 0; i < (inputs.size() - 1); ++i)
{
String buildopt = format("-DLOOP=%d", i);
ocl::Kernel kernel("op_sum4", ocl::dnn::eltwise_oclsrc, buildopt);
int idx = 0;
UMat inpMat = (i == 0) ? inputs[0] : UMat();
float coeff1 = (coeffs.empty() || i > 0) ? 1.0f : coeffs[i];
float coeff2 = coeffs.empty() ? 1.0f : coeffs[i + 1];
kernel.set(idx++, ocl::KernelArg::PtrReadOnly(inputs[0]));
kernel.set(idx++, ocl::KernelArg::PtrReadOnly(inputs[1]));
kernel.set(idx++, (int)plane_size);
kernel.set(idx++, (float)coeff1);
kernel.set(idx++, (float)coeff2);
kernel.set(idx++, ocl::KernelArg::PtrReadWrite(outputs[0]));
bool ret = kernel.run(1, globalsize, localsize, false);
if (!ret)
return false;
}
}
else
{
multiply(coeffs[i], inputs[i], mul0);
add(mul0, outputs[0], outputs[0]);
float coeff1 = coeffs.empty() ? 1.f : coeffs[0];
float coeff2 = coeffs.empty() ? 1.f : coeffs[1];
UMat mul0, mul1;
multiply(coeff1, inputs[0], mul0);
multiply(coeff2, inputs[1], mul1);
add(mul0, mul1, outputs[0]);
for (int i = 2; i < inputs.size(); ++i)
{
float coeff = coeffs.empty() ? 1.f : coeffs[i];
multiply(coeff, inputs[i], mul0);
add(mul0, outputs[0], outputs[0]);
}
}
}
break;

@ -93,6 +93,67 @@ public:
}
#ifdef HAVE_OPENCL
bool fast_forward_ocl(std::vector<UMat> &inputs, std::vector<UMat> &outputs)
{
if( fuse_batch_norm && scale.empty())
{
bnorm->getScaleShift(scale, shift);
bnorm_weight = scale.getUMat(ACCESS_READ);
bnorm_bias = shift.getUMat(ACCESS_READ);
}
int splitDim = (acrossChannels) ? 1 : 2;
for (size_t inpIdx = 0; inpIdx < inputs.size(); inpIdx++)
{
UMat &inpMat = inputs[inpIdx];
UMat &outMat = outputs[inpIdx];
int newRows = total(shape(inpMat), 0, splitDim);
MatShape s = shape(newRows, inpMat.total() / newRows);
UMat oneMat = UMat::ones(s[1], 1, CV_32F);
UMat meanMat = UMat(s[0], 1, CV_32F);
UMat tmpMat = UMat(s[0], s[1], CV_32F);
float alpha = 1.0f / s[1];
String buildopt = "-DNUM=4";
ocl::Kernel k("mean_fuse4", ocl::dnn::mvn_oclsrc, buildopt);
size_t localsize[] = { 128 };
size_t globalsize[] = { (size_t)s[0] / 4 * localsize[0] };
int argId = 0;
k.set(argId++, ocl::KernelArg::PtrReadOnly(inpMat));
k.set(argId++, (int)s[1]);
k.set(argId++, alpha);
k.set(argId++, ocl::KernelArg::PtrWriteOnly(meanMat));
k.set(argId++, ocl::KernelArg::PtrWriteOnly(tmpMat));
k.set(argId++, NULL, localsize[0] * sizeof(cl_float4));
bool ret = k.run(1, globalsize, localsize, false);
if (!ret)
return false;
buildopt += format(" %s %s", (fuse_batch_norm) ? "-DFUSE_BATCH_NORM" : "",
(fuse_relu) ? "-DFUSE_RELU" : "");
ocl::Kernel k1("mvn_fuse4", ocl::dnn::mvn_oclsrc, buildopt);
argId = 0;
k1.set(argId++, ocl::KernelArg::PtrReadOnly(tmpMat));
k1.set(argId++, ocl::KernelArg::PtrReadOnly(inpMat));
k1.set(argId++, ocl::KernelArg::PtrReadOnly(meanMat));
k1.set(argId++, (int)s[1]);
k1.set(argId++, (float)alpha);
k1.set(argId++, (float)eps);
k1.set(argId++, (float)relu_slope);
k1.set(argId++, ocl::KernelArg::PtrReadOnly(bnorm_weight));
k1.set(argId++, ocl::KernelArg::PtrReadOnly(bnorm_bias));
k1.set(argId++, ocl::KernelArg::PtrWriteOnly(outMat));
k1.set(argId++, NULL, localsize[0] * sizeof(cl_float4));
ret = k1.run(1, globalsize, localsize, false);
if (!ret)
return false;
}
return true;
}
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
@ -101,6 +162,15 @@ public:
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
int splitDim = (acrossChannels) ? 1 : 2;
int row_size = total(shape(inputs[0]), 0, splitDim);
int plane_size = total(shape(inputs[0]), splitDim);
if (normVariance && (row_size % 4 == 0) && (plane_size % 4 == 0))
{
bool ret = fast_forward_ocl(inputs, outputs);
return ret;
}
if( fuse_batch_norm && scale.empty())
{
bnorm->getScaleShift(scale, shift);
@ -112,11 +182,7 @@ public:
{
UMat &inpMat = inputs[inpIdx];
UMat &outMat = outputs[inpIdx];
int splitDim = (acrossChannels) ? 1 : 2;
int i, newRows = 1;
for( i = 0; i < splitDim; i++ )
newRows *= inpMat.size[i];
int newRows = total(shape(inpMat), 0, splitDim);
MatShape s = shape(newRows, inpMat.total() / newRows);
UMat oneMat = UMat::ones(s[1], 1, CV_32F);

@ -43,6 +43,7 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include "opencl_kernels_dnn.hpp"
namespace cv
{
@ -171,11 +172,59 @@ public:
}
}
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
if (inputs[0].dims < 4)
return false;
const UMat& inpMat = inputs[0];
for (size_t i = 0; i < outputs.size(); i++)
{
int groups = outputs[i].size[0];
int channels = outputs[i].size[1];
int rows = outputs[i].size[2];
int cols = outputs[i].size[3];
int number = (cols % 8 == 0) ? 8 : ((cols % 4 == 0) ? 4 : 1);
String buildopt = format("-DNUM=%d ", number);
String kname = format("slice%d", number);
ocl::Kernel kernel(kname.c_str(), ocl::dnn::slice_oclsrc, buildopt);
size_t global[] = { (size_t)groups * channels, (size_t)rows * cols / number };
int idx = 0;
kernel.set(idx++, ocl::KernelArg::PtrReadOnly(inpMat));
kernel.set(idx++, (int)(inpMat.size[2] * inpMat.size[3]));
kernel.set(idx++, (int)inpMat.size[3]);
kernel.set(idx++, (int)global[0]);
kernel.set(idx++, (int)(rows * cols));
kernel.set(idx++, (int)cols);
kernel.set(idx++, (int)sliceRanges[i][2].start);
kernel.set(idx++, (int)sliceRanges[i][3].start);
kernel.set(idx++, ocl::KernelArg::PtrWriteOnly(outputs[i]));
bool ret = kernel.run(2, global, NULL, false);
if (!ret)
return false;
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
}

@ -0,0 +1,98 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define Dtype float
#define Dtype4 float4
#define Dtype8 float8
__kernel void op_sum4(__global const Dtype * A,
__global const Dtype * B,
unsigned int A_col_size,
const float coeff1,
const float coeff2,
__global Dtype * C)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global Dtype *src0_read = A + row_gid * 4 * A_col_size;
const __global Dtype *src1_read = B + row_gid * 4 * A_col_size;
__global Dtype *dst0_read = C + row_gid * 4 * A_col_size;
Dtype4 a0, a1, a2, a3;
Dtype4 dot0, dot1, dot2, dot3;
unsigned int i = lid;
while( i < A_col_size / 4)
{
const Dtype4 b0 = vload4(i, src1_read);
const Dtype4 b1 = vload4(i, src1_read + A_col_size);
const Dtype4 b2 = vload4(i, src1_read + 2 * A_col_size);
const Dtype4 b3 = vload4(i, src1_read + 3 * A_col_size);
#if LOOP == 0
a0 = vload4(i, src0_read);
a1 = vload4(i, src0_read + A_col_size);
a2 = vload4(i, src0_read + 2 * A_col_size);
a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 = a0 * coeff1 + b0 * coeff2;
dot1 = a1 * coeff1 + b1 * coeff2;
dot2 = a2 * coeff1 + b2 * coeff2;
dot3 = a3 * coeff1 + b3 * coeff2;
#else
a0 = vload4(i, dst0_read);
a1 = vload4(i, dst0_read + A_col_size);
a2 = vload4(i, dst0_read + 2 * A_col_size);
a3 = vload4(i, dst0_read + 3 * A_col_size);
dot0 = a0 + b0 * coeff2;
dot1 = a1 + b1 * coeff2;
dot2 = a2 + b2 * coeff2;
dot3 = a3 + b3 * coeff2;
#endif
vstore4(dot0, i, dst0_read);
vstore4(dot1, i, dst0_read + A_col_size);
vstore4(dot2, i, dst0_read + 2 * A_col_size);
vstore4(dot3, i, dst0_read + 3 * A_col_size);
i += get_local_size(0);
}
}

@ -50,18 +50,24 @@
#define vec_type Dtype8
#define CALC_MEAN calc_mean8
#define MVN mvn8
#define MEAN_FUSE mean_fuse8
#define MVN_FUSE mvn_fuse8
#elif NUM == 4
#define load(src, index) vload4(0, src + index)
#define store(vec, dst, index) vstore4(vec, 0, dst + index)
#define vec_type Dtype4
#define CALC_MEAN calc_mean4
#define MVN mvn4
#define MEAN_FUSE mean_fuse4
#define MVN_FUSE mvn_fuse4
#elif NUM == 1
#define load(src, index) src[index]
#define store(vec, dst, index) dst[index] = vec
#define vec_type Dtype
#define CALC_MEAN calc_mean1
#define MVN mvn1
#define MEAN_FUSE mean_fuse1
#define MVN_FUSE mvn_fuse1
#endif
__kernel void CALC_MEAN(__global const Dtype* src,
@ -128,3 +134,177 @@ __kernel void MVN(__global const Dtype* src,
store(dst_vec, dst, index);
}
__kernel void MEAN_FUSE(__global const Dtype * A,
unsigned int A_col_size,
float alpha,
__global Dtype4 * result,
__global Dtype * B,
__local Dtype4 * work)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global Dtype *src0_read = A + row_gid * 4 * A_col_size;
__global Dtype *dst0_read = B + row_gid * 4 * A_col_size;
Dtype4 dot0, dot1, dot2, dot3;
dot0 = dot1 = dot2 = dot3 = (Dtype4)(0.f);
unsigned int i = lid;
const Dtype4 b0 = (Dtype4)1.f;
while( i < A_col_size / 4)
{
const Dtype4 a0 = vload4(i, src0_read);
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 += a0;
dot1 += a1;
dot2 += a2;
dot3 += a3;
i += get_local_size(0);
}
work[lid].s0 = dot(dot0, b0);
work[lid].s1 = dot(dot1, b0);
work[lid].s2 = dot(dot2, b0);
work[lid].s3 = dot(dot3, b0);
for(unsigned int stride=get_local_size(0)/2 ; stride>0 ; stride>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < stride)
work[lid] += work[lid+stride];
}
barrier(CLK_LOCAL_MEM_FENCE);
if(lid == 0)
{
result[row_gid] = alpha * work[0];
}
Dtype4 sum = work[0] * alpha;
i = lid;
while( i < A_col_size / 4)
{
const Dtype4 a0 = vload4(i, src0_read);
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 = native_powr(a0 - (Dtype4)sum.x, 2);
dot1 = native_powr(a1 - (Dtype4)sum.y, 2);
dot2 = native_powr(a2 - (Dtype4)sum.z, 2);
dot3 = native_powr(a3 - (Dtype4)sum.w, 2);
vstore4(dot0, i, dst0_read);
vstore4(dot1, i, dst0_read + A_col_size);
vstore4(dot2, i, dst0_read + 2 * A_col_size);
vstore4(dot3, i, dst0_read + 3 * A_col_size);
i += get_local_size(0);
}
}
__kernel void MVN_FUSE(__global const Dtype * tmp,
__global const Dtype * A,
__global const Dtype4 * mean,
unsigned int A_col_size,
const float alpha_val,
const float eps,
const float relu_slope,
__global const Dtype4 * bnorm_weight,
__global const Dtype4 * bnorm_bias,
__global Dtype * B,
__local Dtype4 * work)
{
unsigned int row_gid = get_group_id(0);
unsigned int lid = get_local_id(0);
const __global Dtype *src0_read = tmp + row_gid * 4 * A_col_size;
const __global Dtype *src1_read = A + row_gid * 4 * A_col_size;
__global Dtype *dst0_read = B + row_gid * 4 * A_col_size;
Dtype4 dot0, dot1, dot2, dot3;
dot0 = dot1 = dot2 = dot3 = (Dtype4)(0.f);
unsigned int i = lid;
const Dtype4 b0 = (Dtype4)1.f;
while( i < A_col_size / 4)
{
const Dtype4 a0 = vload4(i, src0_read);
const Dtype4 a1 = vload4(i, src0_read + A_col_size);
const Dtype4 a2 = vload4(i, src0_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src0_read + 3 * A_col_size);
dot0 += a0;
dot1 += a1;
dot2 += a2;
dot3 += a3;
i += get_local_size(0);
}
work[lid].s0 = dot(dot0, b0);
work[lid].s1 = dot(dot1, b0);
work[lid].s2 = dot(dot2, b0);
work[lid].s3 = dot(dot3, b0);
for(unsigned int stride=get_local_size(0)/2 ; stride>0 ; stride>>=1)
{
barrier(CLK_LOCAL_MEM_FENCE);
if(lid < stride)
work[lid] += work[lid+stride];
}
barrier(CLK_LOCAL_MEM_FENCE);
Dtype4 mean_val = mean[row_gid];
Dtype4 dev_val = sqrt(work[0] * alpha_val) + (Dtype4)eps;
Dtype4 alpha = (Dtype4)1.f / dev_val;
Dtype4 w = (Dtype4)1.f;
Dtype4 b = (Dtype4)0.f;
#ifdef FUSE_BATCH_NORM
w = bnorm_weight[row_gid];
b = bnorm_bias[row_gid];
#endif
i = lid;
while( i < A_col_size / 4)
{
const Dtype4 a0 = vload4(i, src1_read);
const Dtype4 a1 = vload4(i, src1_read + A_col_size);
const Dtype4 a2 = vload4(i, src1_read + 2 * A_col_size);
const Dtype4 a3 = vload4(i, src1_read + 3 * A_col_size);
dot0 = (a0 - (Dtype4)mean_val.x) * alpha.x;
dot1 = (a1 - (Dtype4)mean_val.y) * alpha.y;
dot2 = (a2 - (Dtype4)mean_val.z) * alpha.z;
dot3 = (a3 - (Dtype4)mean_val.w) * alpha.w;
dot0 = dot0 * w.x + (Dtype4)b.x;
dot1 = dot1 * w.y + (Dtype4)b.y;
dot2 = dot2 * w.z + (Dtype4)b.z;
dot3 = dot3 * w.w + (Dtype4)b.w;
#ifdef FUSE_RELU
Dtype4 new0 = dot0 * relu_slope;
dot0 = select(new0, dot0, dot0 > (Dtype4)0.f);
Dtype4 new1 = dot1 * relu_slope;
dot1 = select(new1, dot1, dot1 > (Dtype4)0.f);
Dtype4 new2 = dot2 * relu_slope;
dot2 = select(new2, dot2, dot2 > (Dtype4)0.f);
Dtype4 new3 = dot3 * relu_slope;
dot3 = select(new3, dot3, dot3 > (Dtype4)0.f);
#endif
vstore4(dot0, i, dst0_read);
vstore4(dot1, i, dst0_read + A_col_size);
vstore4(dot2, i, dst0_read + 2 * A_col_size);
vstore4(dot3, i, dst0_read + 3 * A_col_size);
i += get_local_size(0);
}
}

@ -0,0 +1,87 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Copyright (c) 2016-2017 Fabian David Tschopp, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define Dtype float
#define Dtype4 float4
#define Dtype8 float8
#if NUM == 8
#define load(src, index) vload8(0, src + index)
#define store(vec, dst, index) vstore8(vec, 0, dst + index)
#define vec_type Dtype8
#define SLICE slice8
#elif NUM == 4
#define load(src, index) vload4(0, src + index)
#define store(vec, dst, index) vstore4(vec, 0, dst + index)
#define vec_type Dtype4
#define SLICE slice4
#elif NUM == 1
#define load(src, index) src[index]
#define store(vec, dst, index) dst[index] = vec
#define vec_type Dtype
#define SLICE slice1
#endif
__kernel void SLICE(__global const Dtype* src,
const int src_plane_size,
const int src_cols,
const int channels,
const int dst_plane_size,
const int dst_cols,
const int row_offset,
const int col_offset,
__global Dtype* dst)
{
int x = get_global_id(0);
int y = get_global_id(1) * NUM;
if ((x >= channels) || (y >= dst_plane_size))
return;
int row = y / dst_cols + row_offset;
int col = y % dst_cols + col_offset;
int src_index = x * src_plane_size + row * src_cols + col;
int dst_index = x * dst_plane_size + y;
vec_type val = load(src, src_index);
store(val, dst, dst_index);
}

@ -367,11 +367,14 @@ OCL_TEST(Layer_Test_PReLU, Accuracy)
// );
//}
static void test_Reshape_Split_Slice_layers()
static void test_Reshape_Split_Slice_layers(int targetId)
{
Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt"));
ASSERT_FALSE(net.empty());
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
net.setPreferableTarget(targetId);
Mat input(6, 12, CV_32F);
RNG rng(0);
rng.fill(input, RNG::UNIFORM, -1, 1);
@ -384,7 +387,12 @@ static void test_Reshape_Split_Slice_layers()
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
{
test_Reshape_Split_Slice_layers();
test_Reshape_Split_Slice_layers(DNN_TARGET_CPU);
}
OCL_TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
{
test_Reshape_Split_Slice_layers(DNN_TARGET_OPENCL);
}
TEST(Layer_Conv_Elu, Accuracy)

Loading…
Cancel
Save