Merge pull request #2996 from akarsakov:ocl_dft_new_concept

pull/2981/merge
Vadim Pisarevsky 11 years ago
commit 962b519708
  1. 1
      modules/core/include/opencv2/core/cvdef.h
  2. 396
      modules/core/src/dxt.cpp
  3. 864
      modules/core/src/opencl/fft.cl

@ -244,6 +244,7 @@ typedef signed char schar;
/* fundamental constants */
#define CV_PI 3.1415926535897932384626433832795
#define CV_2PI 6.283185307179586476925286766559
#define CV_LOG2 0.69314718055994530941723212145818
/****************************************************************************************\

@ -43,6 +43,7 @@
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#include "opencl_kernels.hpp"
#include <map>
namespace cv
{
@ -1781,6 +1782,375 @@ static bool ippi_DFT_R_32F(const Mat& src, Mat& dst, bool inv, int norm_flag)
#endif
}
#ifdef HAVE_OPENCL
namespace cv
{
enum FftType
{
R2R = 0, // real to CCS in case forward transform, CCS to real otherwise
C2R = 1, // complex to real in case inverse transform
R2C = 2, // real to complex in case forward transform
C2C = 3 // complex to complex
};
struct OCL_FftPlan
{
private:
UMat twiddles;
String buildOptions;
int thread_count;
bool status;
int dft_size;
public:
OCL_FftPlan(int _size): dft_size(_size), status(true)
{
int min_radix;
std::vector<int> radixes, blocks;
ocl_getRadixes(dft_size, radixes, blocks, min_radix);
thread_count = dft_size / min_radix;
if (thread_count > (int) ocl::Device::getDefault().maxWorkGroupSize())
{
status = false;
return;
}
// generate string with radix calls
String radix_processing;
int n = 1, twiddle_size = 0;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i], block = blocks[i];
if (block > 1)
radix_processing += format("fft_radix%d_B%d(smem,twiddles+%d,ind,%d,%d);", radix, block, twiddle_size, n, dft_size/radix);
else
radix_processing += format("fft_radix%d(smem,twiddles+%d,ind,%d,%d);", radix, twiddle_size, n, dft_size/radix);
twiddle_size += (radix-1)*n;
n *= radix;
}
Mat tw(1, twiddle_size, CV_32FC2);
float* ptr = tw.ptr<float>();
int ptr_index = 0;
n = 1;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
n *= radix;
for (int j=1; j<radix; j++)
{
double theta = -CV_2PI*j/n;
for (int k=0; k<(n/radix); k++)
{
ptr[ptr_index++] = (float) cos(k*theta);
ptr[ptr_index++] = (float) sin(k*theta);
}
}
}
twiddles = tw.getUMat(ACCESS_READ);
buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D RADIX_PROCESS=%s",
dft_size, min_radix, radix_processing.c_str());
}
bool enqueueTransform(InputArray _src, OutputArray _dst, int num_dfts, int flags, int fftType, bool rows = true) const
{
if (!status)
return false;
UMat src = _src.getUMat();
UMat dst = _dst.getUMat();
size_t globalsize[2];
size_t localsize[2];
String kernel_name;
bool is1d = (flags & DFT_ROWS) != 0 || num_dfts == 1;
bool inv = (flags & DFT_INVERSE) != 0;
String options = buildOptions;
if (rows)
{
globalsize[0] = thread_count; globalsize[1] = src.rows;
localsize[0] = thread_count; localsize[1] = 1;
kernel_name = !inv ? "fft_multi_radix_rows" : "ifft_multi_radix_rows";
if ((is1d || inv) && (flags & DFT_SCALE))
options += " -D DFT_SCALE";
}
else
{
globalsize[0] = num_dfts; globalsize[1] = thread_count;
localsize[0] = 1; localsize[1] = thread_count;
kernel_name = !inv ? "fft_multi_radix_cols" : "ifft_multi_radix_cols";
if (flags & DFT_SCALE)
options += " -D DFT_SCALE";
}
options += src.channels() == 1 ? " -D REAL_INPUT" : " -D COMPLEX_INPUT";
options += dst.channels() == 1 ? " -D REAL_OUTPUT" : " -D COMPLEX_OUTPUT";
options += is1d ? " -D IS_1D" : "";
if (!inv)
{
if ((is1d && src.channels() == 1) || (rows && (fftType == R2R)))
options += " -D NO_CONJUGATE";
}
else
{
if (rows && (fftType == C2R || fftType == R2R))
options += " -D NO_CONJUGATE";
if (dst.cols % 2 == 0)
options += " -D EVEN";
}
ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, options);
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(twiddles), thread_count, num_dfts);
return k.run(2, globalsize, localsize, false);
}
private:
static void ocl_getRadixes(int cols, std::vector<int>& radixes, std::vector<int>& blocks, int& min_radix)
{
int factors[34];
int nf = DFTFactorize(cols, factors);
int n = 1;
int factor_index = 0;
min_radix = INT_MAX;
// 2^n transforms
if ((factors[factor_index] & 1) == 0)
{
for( ; n < factors[factor_index];)
{
int radix = 2, block = 1;
if (8*n <= factors[0])
radix = 8;
else if (4*n <= factors[0])
{
radix = 4;
if (cols % 12 == 0)
block = 3;
else if (cols % 8 == 0)
block = 2;
}
else
{
if (cols % 10 == 0)
block = 5;
else if (cols % 8 == 0)
block = 4;
else if (cols % 6 == 0)
block = 3;
else if (cols % 4 == 0)
block = 2;
}
radixes.push_back(radix);
blocks.push_back(block);
min_radix = min(min_radix, block*radix);
n *= radix;
}
factor_index++;
}
// all the other transforms
for( ; factor_index < nf; factor_index++)
{
int radix = factors[factor_index], block = 1;
if (radix == 3)
{
if (cols % 12 == 0)
block = 4;
else if (cols % 9 == 0)
block = 3;
else if (cols % 6 == 0)
block = 2;
}
else if (radix == 5)
{
if (cols % 10 == 0)
block = 2;
}
radixes.push_back(radix);
blocks.push_back(block);
min_radix = min(min_radix, block*radix);
}
}
};
class OCL_FftPlanCache
{
public:
static OCL_FftPlanCache & getInstance()
{
static OCL_FftPlanCache planCache;
return planCache;
}
Ptr<OCL_FftPlan> getFftPlan(int dft_size)
{
std::map<int, Ptr<OCL_FftPlan> >::iterator f = planStorage.find(dft_size);
if (f != planStorage.end())
{
return f->second;
}
else
{
Ptr<OCL_FftPlan> newPlan = Ptr<OCL_FftPlan>(new OCL_FftPlan(dft_size));
planStorage[dft_size] = newPlan;
return newPlan;
}
}
~OCL_FftPlanCache()
{
planStorage.clear();
}
protected:
OCL_FftPlanCache() :
planStorage()
{
}
std::map<int, Ptr<OCL_FftPlan> > planStorage;
};
static bool ocl_dft_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType)
{
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols());
return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true);
}
static bool ocl_dft_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType)
{
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows());
return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false);
}
static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows)
{
int type = _src.type(), cn = CV_MAT_CN(type);
Size ssize = _src.size();
if ( !(type == CV_32FC1 || type == CV_32FC2) )
return false;
// if is not a multiplication of prime numbers { 2, 3, 5 }
if (ssize.area() != getOptimalDFTSize(ssize.area()))
return false;
UMat src = _src.getUMat();
int complex_input = cn == 2 ? 1 : 0;
int complex_output = (flags & DFT_COMPLEX_OUTPUT) != 0;
int real_input = cn == 1 ? 1 : 0;
int real_output = (flags & DFT_REAL_OUTPUT) != 0;
bool inv = (flags & DFT_INVERSE) != 0 ? 1 : 0;
if( nonzero_rows <= 0 || nonzero_rows > _src.rows() )
nonzero_rows = _src.rows();
bool is1d = (flags & DFT_ROWS) != 0 || nonzero_rows == 1;
// if output format is not specified
if (complex_output + real_output == 0)
{
if (real_input)
real_output = 1;
else
complex_output = 1;
}
FftType fftType = (FftType)(complex_input << 0 | complex_output << 1);
// Forward Complex to CCS not supported
if (fftType == C2R && !inv)
fftType = C2C;
// Inverse CCS to Complex not supported
if (fftType == R2C && inv)
fftType = R2R;
UMat output;
if (fftType == C2C || fftType == R2C)
{
// complex output
_dst.create(src.size(), CV_32FC2);
output = _dst.getUMat();
}
else
{
// real output
if (is1d)
{
_dst.create(src.size(), CV_32FC1);
output = _dst.getUMat();
}
else
{
_dst.create(src.size(), CV_32FC1);
output.create(src.size(), CV_32FC2);
}
}
if (!inv)
{
if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
return false;
if (!is1d)
{
int nonzero_cols = fftType == R2R ? output.cols/2 + 1 : output.cols;
if (!ocl_dft_cols(output, _dst, nonzero_cols, flags, fftType))
return false;
}
}
else
{
if (fftType == C2C)
{
// complex output
if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
return false;
if (!is1d)
{
if (!ocl_dft_cols(output, output, output.cols, flags, fftType))
return false;
}
}
else
{
if (is1d)
{
if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
return false;
}
else
{
int nonzero_cols = src.cols/2 + 1;
if (!ocl_dft_cols(src, output, nonzero_cols, flags, fftType))
return false;
if (!ocl_dft_rows(output, _dst, nonzero_rows, flags, fftType))
return false;
}
}
}
return true;
}
} // namespace cv;
#endif
#ifdef HAVE_CLAMDFFT
namespace cv {
@ -1791,14 +2161,6 @@ namespace cv {
CV_Assert(s == CLFFT_SUCCESS); \
}
enum FftType
{
R2R = 0, // real to real
C2R = 1, // opencl HERMITIAN_INTERLEAVED to real
R2C = 2, // real to opencl HERMITIAN_INTERLEAVED
C2C = 3 // complex to complex
};
class PlanCache
{
struct FftPlan
@ -1923,7 +2285,7 @@ public:
}
// no baked plan is found, so let's create a new one
FftPlan * newPlan = new FftPlan(dft_size, src_step, dst_step, doubleFP, inplace, flags, fftType);
Ptr<FftPlan> newPlan = Ptr<FftPlan>(new FftPlan(dft_size, src_step, dst_step, doubleFP, inplace, flags, fftType));
planStorage.push_back(newPlan);
return newPlan->plHandle;
@ -1931,8 +2293,6 @@ public:
~PlanCache()
{
for (std::vector<FftPlan *>::iterator i = planStorage.begin(), end = planStorage.end(); i != end; ++i)
delete (*i);
planStorage.clear();
}
@ -1942,7 +2302,7 @@ protected:
{
}
std::vector<FftPlan *> planStorage;
std::vector<Ptr<FftPlan> > planStorage;
};
extern "C" {
@ -1960,7 +2320,7 @@ static void CL_CALLBACK oclCleanupCallback(cl_event e, cl_int, void *p)
}
static bool ocl_dft(InputArray _src, OutputArray _dst, int flags)
static bool ocl_dft_amdfft(InputArray _src, OutputArray _dst, int flags)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
Size ssize = _src.size();
@ -2019,7 +2379,6 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags)
tmpBuffer.addref();
clSetEventCallback(e, CL_COMPLETE, oclCleanupCallback, tmpBuffer.u);
return true;
}
@ -2034,7 +2393,12 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
#ifdef HAVE_CLAMDFFT
CV_OCL_RUN(ocl::haveAmdFft() && ocl::Device::getDefault().type() != ocl::Device::TYPE_CPU &&
_dst.isUMat() && _src0.dims() <= 2 && nonzero_rows == 0,
ocl_dft(_src0, _dst, flags))
ocl_dft_amdfft(_src0, _dst, flags))
#endif
#ifdef HAVE_OPENCL
CV_OCL_RUN(_dst.isUMat() && _src0.dims() <= 2,
ocl_dft(_src0, _dst, flags, nonzero_rows))
#endif
static DFTFunc dft_tbl[6] =
@ -2046,10 +2410,8 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
(DFTFunc)RealDFT_64f,
(DFTFunc)CCSIDFT_64f
};
AutoBuffer<uchar> buf;
void *spec = 0;
Mat src0 = _src0.getMat(), src = src0;
int prev_len = 0, stage = 0;
bool inv = (flags & DFT_INVERSE) != 0;

@ -0,0 +1,864 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#define SQRT_2 0.707106781188f
#define sin_120 0.866025403784f
#define fft5_2 0.559016994374f
#define fft5_3 -0.951056516295f
#define fft5_4 -1.538841768587f
#define fft5_5 0.363271264002f
__attribute__((always_inline))
float2 mul_float2(float2 a, float2 b) {
return (float2)(fma(a.x, b.x, -a.y * b.y), fma(a.x, b.y, a.y * b.x));
}
__attribute__((always_inline))
float2 twiddle(float2 a) {
return (float2)(a.y, -a.x);
}
__attribute__((always_inline))
void butterfly2(float2 a0, float2 a1, __local float2* smem, __global const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1);
const int dst_ind = (x << 1) - k;
smem[dst_ind] = a0 + a1;
smem[dst_ind+block_size] = a0 - a1;
}
__attribute__((always_inline))
void butterfly4(float2 a0, float2 a1, float2 a2, float2 a3, __local float2* smem, __global const float2* twiddles,
const int x, const int block_size)
{
const int k = x & (block_size - 1);
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k + 2*block_size], a3);
const int dst_ind = ((x - k) << 2) + k;
float2 b0 = a0 + a2;
a2 = a0 - a2;
float2 b1 = a1 + a3;
a3 = twiddle(a1 - a3);
smem[dst_ind] = b0 + b1;
smem[dst_ind + block_size] = a2 + a3;
smem[dst_ind + 2*block_size] = b0 - b1;
smem[dst_ind + 3*block_size] = a2 - a3;
}
__attribute__((always_inline))
void butterfly3(float2 a0, float2 a1, float2 a2, __local float2* smem, __global const float2* twiddles,
const int x, const int block_size)
{
const int k = x % block_size;
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k+block_size], a2);
const int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2;
a2 = twiddle(sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2;
smem[dst_ind + 2*block_size] = b0 - a2;
}
__attribute__((always_inline))
void butterfly5(float2 a0, float2 a1, float2 a2, float2 a3, float2 a4, __local float2* smem, __global const float2* twiddles,
const int x, const int block_size)
{
const int k = x % block_size;
a1 = mul_float2(twiddles[k], a1);
a2 = mul_float2(twiddles[k + block_size], a2);
a3 = mul_float2(twiddles[k+2*block_size], a3);
a4 = mul_float2(twiddles[k+3*block_size], a4);
const int dst_ind = ((x - k) * 5) + k;
__local float2* dst = smem + dst_ind;
float2 b0, b1, b5;
b1 = a1 + a4;
a1 -= a4;
a4 = a3 + a2;
a3 -= a2;
a2 = b1 + a4;
b0 = a0 - (float2)0.25f * a2;
b1 = fft5_2 * (b1 - a4);
a4 = fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y;
a4.y -= fft5_4 * a3.x;
a1 = b0 + b1;
b0 -= b1;
dst[0] = a0 + a2;
dst[block_size] = a1 + a4;
dst[2 * block_size] = b0 + b5;
dst[3 * block_size] = b0 - b5;
dst[4 * block_size] = a1 - a4;
}
__attribute__((always_inline))
void fft_radix2(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1;
if (x < t)
{
a0 = smem[x];
a1 = smem[x+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
butterfly2(a0, a1, smem, twiddles, x, block_size);
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix2_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3;
if (x1 < t/2)
{
a0 = smem[x1]; a1 = smem[x1+t];
a2 = smem[x2]; a3 = smem[x2+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/2)
{
butterfly2(a0, a1, smem, twiddles, x1, block_size);
butterfly2(a2, a3, smem, twiddles, x2, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix2_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x1 + 2*t/3;
float2 a0, a1, a2, a3, a4, a5;
if (x1 < t/3)
{
a0 = smem[x1]; a1 = smem[x1+t];
a2 = smem[x2]; a3 = smem[x2+t];
a4 = smem[x3]; a5 = smem[x3+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/3)
{
butterfly2(a0, a1, smem, twiddles, x1, block_size);
butterfly2(a2, a3, smem, twiddles, x2, block_size);
butterfly2(a4, a5, smem, twiddles, x3, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix2_B4(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/4;
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
if (x1 < t/4)
{
a0 = smem[x1]; a1 = smem[x1+t];
a2 = smem[x2]; a3 = smem[x2+t];
a4 = smem[x3]; a5 = smem[x3+t];
a6 = smem[x4]; a7 = smem[x4+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/4)
{
butterfly2(a0, a1, smem, twiddles, x1, block_size);
butterfly2(a2, a3, smem, twiddles, x2, block_size);
butterfly2(a4, a5, smem, twiddles, x3, block_size);
butterfly2(a6, a7, smem, twiddles, x4, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix2_B5(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/5;
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
const int x5 = x1 + 4*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
if (x1 < t/5)
{
a0 = smem[x1]; a1 = smem[x1+t];
a2 = smem[x2]; a3 = smem[x2+t];
a4 = smem[x3]; a5 = smem[x3+t];
a6 = smem[x4]; a7 = smem[x4+t];
a8 = smem[x5]; a9 = smem[x5+t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/5)
{
butterfly2(a0, a1, smem, twiddles, x1, block_size);
butterfly2(a2, a3, smem, twiddles, x2, block_size);
butterfly2(a4, a5, smem, twiddles, x3, block_size);
butterfly2(a6, a7, smem, twiddles, x4, block_size);
butterfly2(a8, a9, smem, twiddles, x5, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix4(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1, a2, a3;
if (x < t)
{
a0 = smem[x]; a1 = smem[x+t]; a2 = smem[x+2*t]; a3 = smem[x+3*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
butterfly4(a0, a1, a2, a3, smem, twiddles, x, block_size);
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix4_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
if (x1 < t/2)
{
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t];
a4 = smem[x2]; a5 = smem[x2+t]; a6 = smem[x2+2*t]; a7 = smem[x2+3*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/2)
{
butterfly4(a0, a1, a2, a3, smem, twiddles, x1, block_size);
butterfly4(a4, a5, a6, a7, smem, twiddles, x2, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix4_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x2 + t/3;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
if (x1 < t/3)
{
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t];
a4 = smem[x2]; a5 = smem[x2+t]; a6 = smem[x2+2*t]; a7 = smem[x2+3*t];
a8 = smem[x3]; a9 = smem[x3+t]; a10 = smem[x3+2*t]; a11 = smem[x3+3*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/3)
{
butterfly4(a0, a1, a2, a3, smem, twiddles, x1, block_size);
butterfly4(a4, a5, a6, a7, smem, twiddles, x2, block_size);
butterfly4(a8, a9, a10, a11, smem, twiddles, x3, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix8(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
const int k = x % block_size;
float2 a0, a1, a2, a3, a4, a5, a6, a7;
if (x < t)
{
int tw_ind = block_size / 8;
a0 = smem[x];
a1 = mul_float2(twiddles[k], smem[x + t]);
a2 = mul_float2(twiddles[k + block_size],smem[x+2*t]);
a3 = mul_float2(twiddles[k+2*block_size],smem[x+3*t]);
a4 = mul_float2(twiddles[k+3*block_size],smem[x+4*t]);
a5 = mul_float2(twiddles[k+4*block_size],smem[x+5*t]);
a6 = mul_float2(twiddles[k+5*block_size],smem[x+6*t]);
a7 = mul_float2(twiddles[k+6*block_size],smem[x+7*t]);
float2 b0, b1, b6, b7;
b0 = a0 + a4;
a4 = a0 - a4;
b1 = a1 + a5;
a5 = a1 - a5;
a5 = (float2)(SQRT_2) * (float2)(a5.x + a5.y, -a5.x + a5.y);
b6 = twiddle(a2 - a6);
a2 = a2 + a6;
b7 = a3 - a7;
b7 = (float2)(SQRT_2) * (float2)(-b7.x + b7.y, -b7.x - b7.y);
a3 = a3 + a7;
a0 = b0 + a2;
a2 = b0 - a2;
a1 = b1 + a3;
a3 = twiddle(b1 - a3);
a6 = a4 - b6;
a4 = a4 + b6;
a7 = twiddle(a5 - b7);
a5 = a5 + b7;
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
{
const int dst_ind = ((x - k) << 3) + k;
__local float2* dst = smem + dst_ind;
dst[0] = a0 + a1;
dst[block_size] = a4 + a5;
dst[2 * block_size] = a2 + a3;
dst[3 * block_size] = a6 + a7;
dst[4 * block_size] = a0 - a1;
dst[5 * block_size] = a4 - a5;
dst[6 * block_size] = a2 - a3;
dst[7 * block_size] = a6 - a7;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix3(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
float2 a0, a1, a2;
if (x < t)
{
a0 = smem[x]; a1 = smem[x+t]; a2 = smem[x+2*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
butterfly3(a0, a1, a2, smem, twiddles, x, block_size);
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix3_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/2;
float2 a0, a1, a2, a3, a4, a5;
if (x1 < t/2)
{
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/2)
{
butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix3_B3(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1 + t/3;
const int x3 = x2 + t/3;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8;
if (x1 < t/2)
{
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
a6 = smem[x3]; a7 = smem[x3+t]; a8 = smem[x3+2*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/2)
{
butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
butterfly3(a6, a7, a8, smem, twiddles, x3, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix3_B4(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int thread_block = t/4;
const int x2 = x1 + thread_block;
const int x3 = x1 + 2*thread_block;
const int x4 = x1 + 3*thread_block;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11;
if (x1 < t/4)
{
a0 = smem[x1]; a1 = smem[x1+t]; a2 = smem[x1+2*t];
a3 = smem[x2]; a4 = smem[x2+t]; a5 = smem[x2+2*t];
a6 = smem[x3]; a7 = smem[x3+t]; a8 = smem[x3+2*t];
a9 = smem[x4]; a10 = smem[x4+t]; a11 = smem[x4+2*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/4)
{
butterfly3(a0, a1, a2, smem, twiddles, x1, block_size);
butterfly3(a3, a4, a5, smem, twiddles, x2, block_size);
butterfly3(a6, a7, a8, smem, twiddles, x3, block_size);
butterfly3(a9, a10, a11, smem, twiddles, x4, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix5(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{
const int k = x % block_size;
float2 a0, a1, a2, a3, a4;
if (x < t)
{
a0 = smem[x]; a1 = smem[x + t]; a2 = smem[x+2*t]; a3 = smem[x+3*t]; a4 = smem[x+4*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x < t)
butterfly5(a0, a1, a2, a3, a4, smem, twiddles, x, block_size);
barrier(CLK_LOCAL_MEM_FENCE);
}
__attribute__((always_inline))
void fft_radix5_B2(__local float2* smem, __global const float2* twiddles, const int x1, const int block_size, const int t)
{
const int x2 = x1+t/2;
float2 a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;
if (x1 < t/2)
{
a0 = smem[x1]; a1 = smem[x1 + t]; a2 = smem[x1+2*t]; a3 = smem[x1+3*t]; a4 = smem[x1+4*t];
a5 = smem[x2]; a6 = smem[x2 + t]; a7 = smem[x2+2*t]; a8 = smem[x2+3*t]; a9 = smem[x2+4*t];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x1 < t/2)
{
butterfly5(a0, a1, a2, a3, a4, smem, twiddles, x1, block_size);
butterfly5(a5, a6, a7, a8, a9, smem, twiddles, x2, block_size);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
#ifdef DFT_SCALE
#define SCALE_VAL(x, scale) x*scale
#else
#define SCALE_VAL(x, scale) x
#endif
__kernel void fft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
{
const int x = get_global_id(0);
const int y = get_group_id(1);
const int block_size = LOCAL_SIZE/kercn;
if (y < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = x;
#ifdef IS_1D
float scale = 1.f/dst_cols;
#else
float scale = 1.f/(dst_cols*dst_rows);
#endif
#ifdef COMPLEX_INPUT
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
smem[x+i*block_size] = src[i*block_size];
#else
__global const float* src = (__global const float*)(src_ptr + mad24(y, src_step, mad24(x, (int)sizeof(float), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
smem[x+i*block_size] = (float2)(src[i*block_size], 0.f);
#endif
barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS;
#ifdef COMPLEX_OUTPUT
#ifdef NO_CONJUGATE
// copy result without complex conjugate
const int cols = dst_cols/2 + 1;
#else
const int cols = dst_cols;
#endif
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset));
#pragma unroll
for (int i=x; i<cols; i+=block_size)
dst[i] = SCALE_VAL(smem[i], scale);
#else
// pack row to CCS
__local float* smem_1cn = (__local float*) smem;
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset));
for (int i=x; i<dst_cols-1; i+=block_size)
dst[i+1] = SCALE_VAL(smem_1cn[i+2], scale);
if (x == 0)
dst[0] = SCALE_VAL(smem_1cn[0], scale);
#endif
}
else
{
// fill with zero other rows
#ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset));
#else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset));
#endif
#pragma unroll
for (int i=x; i<dst_cols; i+=block_size)
dst[i] = 0.f;
}
}
__kernel void fft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
{
const int x = get_group_id(0);
const int y = get_global_id(1);
if (x < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset));
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
float scale = 1.f/(dst_rows*dst_cols);
#pragma unroll
for (int i=0; i<kercn; i++)
smem[y+i*block_size] = *((__global const float2*)(src + i*block_size*src_step));
barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS;
#ifdef COMPLEX_OUTPUT
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
*((__global float2*)(dst + i*block_size*dst_step)) = SCALE_VAL(smem[y + i*block_size], scale);
#else
if (x == 0)
{
// pack first column to CCS
__local float* smem_1cn = (__local float*) smem;
__global uchar* dst = dst_ptr + mad24(y+1, dst_step, dst_offset);
for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
*((__global float*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
if (y == 0)
*((__global float*) (dst_ptr + dst_offset)) = SCALE_VAL(smem_1cn[0], scale);
}
else if (x == (dst_cols+1)/2)
{
// pack last column to CCS (if needed)
__local float* smem_1cn = (__local float*) smem;
__global uchar* dst = dst_ptr + mad24(dst_cols-1, (int)sizeof(float), mad24(y+1, dst_step, dst_offset));
for (int i=y; i<dst_rows-1; i+=block_size, dst+=dst_step*block_size)
*((__global float*) dst) = SCALE_VAL(smem_1cn[i+2], scale);
if (y == 0)
*((__global float*) (dst_ptr + mad24(dst_cols-1, (int)sizeof(float), dst_offset))) = SCALE_VAL(smem_1cn[0], scale);
}
else
{
__global uchar* dst = dst_ptr + mad24(x, (int)sizeof(float)*2, mad24(y, dst_step, dst_offset - (int)sizeof(float)));
#pragma unroll
for (int i=y; i<dst_rows; i+=block_size, dst+=block_size*dst_step)
vstore2(SCALE_VAL(smem[i], scale), 0, (__global float*) dst);
}
#endif
}
}
__kernel void ifft_multi_radix_rows(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
{
const int x = get_global_id(0);
const int y = get_group_id(1);
const int block_size = LOCAL_SIZE/kercn;
#ifdef IS_1D
const float scale = 1.f/dst_cols;
#else
const float scale = 1.f/(dst_cols*dst_rows);
#endif
if (y < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = x;
#if defined(COMPLEX_INPUT) && !defined(NO_CONJUGATE)
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
smem[x+i*block_size].x = src[i*block_size].x;
smem[x+i*block_size].y = -src[i*block_size].y;
}
#else
#if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
__global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(2, (int)sizeof(float), src_offset)));
#pragma unroll
for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
{
smem[i+1].x = src[i].x;
smem[i+1].y = -src[i].y;
smem[LOCAL_SIZE-i-1] = src[i];
}
#else
#pragma unroll
for (int i=x; i<(LOCAL_SIZE-1)/2; i+=block_size)
{
float2 src = vload2(0, (__global const float*)(src_ptr + mad24(y, src_step, mad24(2*i+1, (int)sizeof(float), src_offset))));
smem[i+1].x = src.x;
smem[i+1].y = -src.y;
smem[LOCAL_SIZE-i-1] = src;
}
#endif
if (x==0)
{
smem[0].x = *(__global const float*)(src_ptr + mad24(y, src_step, src_offset));
smem[0].y = 0.f;
if(LOCAL_SIZE % 2 ==0)
{
#if !defined(REAL_INPUT) && defined(NO_CONJUGATE)
smem[LOCAL_SIZE/2].x = src[LOCAL_SIZE/2-1].x;
#else
smem[LOCAL_SIZE/2].x = *(__global const float*)(src_ptr + mad24(y, src_step, mad24(LOCAL_SIZE-1, (int)sizeof(float), src_offset)));
#endif
smem[LOCAL_SIZE/2].y = 0.f;
}
}
#endif
barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS;
// copy data to dst
#ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
dst[i*block_size].x = SCALE_VAL(smem[x + i*block_size].x, scale);
dst[i*block_size].y = SCALE_VAL(-smem[x + i*block_size].y, scale);
}
#else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)), dst_offset)));
#pragma unroll
for (int i=0; i<kercn; i++)
{
dst[i*block_size] = SCALE_VAL(smem[x + i*block_size].x, scale);
}
#endif
}
else
{
// fill with zero other rows
#ifdef COMPLEX_OUTPUT
__global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, dst_offset));
#else
__global float* dst = (__global float*)(dst_ptr + mad24(y, dst_step, dst_offset));
#endif
#pragma unroll
for (int i=x; i<dst_cols; i+=block_size)
dst[i] = 0.f;
}
}
__kernel void ifft_multi_radix_cols(__global const uchar* src_ptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar* dst_ptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global float2* twiddles_ptr, const int t, const int nz)
{
const int x = get_group_id(0);
const int y = get_global_id(1);
#ifdef COMPLEX_INPUT
if (x < nz)
{
__local float2 smem[LOCAL_SIZE];
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset));
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset));
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
#pragma unroll
for (int i=0; i<kercn; i++)
{
float2 temp = *((__global const float2*)(src + i*block_size*src_step));
smem[y+i*block_size].x = temp.x;
smem[y+i*block_size].y = -temp.y;
}
barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS;
// copy data to dst
#pragma unroll
for (int i=0; i<kercn; i++)
{
__global float2* res = (__global float2*)(dst + i*block_size*dst_step);
res[0].x = smem[y + i*block_size].x;
res[0].y = -smem[y + i*block_size].y;
}
}
#else
if (x < nz)
{
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int ind = y;
const int block_size = LOCAL_SIZE/kercn;
__local float2 smem[LOCAL_SIZE];
#ifdef EVEN
if (x!=0 && (x!=(nz-1)))
#else
if (x!=0)
#endif
{
__global const uchar* src = src_ptr + mad24(y, src_step, mad24(2*x-1, (int)sizeof(float), src_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
{
float2 temp = vload2(0, (__global const float*)(src + i*block_size*src_step));
smem[y+i*block_size].x = temp.x;
smem[y+i*block_size].y = -temp.y;
}
}
else
{
int ind = x==0 ? 0: 2*x-1;
__global const float* src = (__global const float*)(src_ptr + mad24(1, src_step, mad24(ind, (int)sizeof(float), src_offset)));
int step = src_step/(int)sizeof(float);
#pragma unroll
for (int i=y; i<(LOCAL_SIZE-1)/2; i+=block_size)
{
smem[i+1].x = src[2*i*step];
smem[i+1].y = -src[(2*i+1)*step];
smem[LOCAL_SIZE-i-1].x = src[2*i*step];;
smem[LOCAL_SIZE-i-1].y = src[(2*i+1)*step];
}
if (y==0)
{
smem[0].x = *(__global const float*)(src_ptr + mad24(ind, (int)sizeof(float), src_offset));
smem[0].y = 0.f;
if(LOCAL_SIZE % 2 ==0)
{
smem[LOCAL_SIZE/2].x = src[(LOCAL_SIZE-2)*step];
smem[LOCAL_SIZE/2].y = 0.f;
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
RADIX_PROCESS;
// copy data to dst
__global uchar* dst = dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float2)), dst_offset));
#pragma unroll
for (int i=0; i<kercn; i++)
{
__global float2* res = (__global float2*)(dst + i*block_size*dst_step);
res[0].x = smem[y + i*block_size].x;
res[0].y = -smem[y + i*block_size].y;
}
}
#endif
}
Loading…
Cancel
Save