|
|
|
@ -192,7 +192,7 @@ void GMM::endLearning() |
|
|
|
|
c[6] = prods[ci][2][0]/n - m[2]*m[0]; c[7] = prods[ci][2][1]/n - m[2]*m[1]; c[8] = prods[ci][2][2]/n - m[2]*m[2]; |
|
|
|
|
|
|
|
|
|
double dtrm = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]); |
|
|
|
|
if( dtrm < std::numeric_limits<double>::epsilon() ) |
|
|
|
|
if( dtrm <= std::numeric_limits<double>::epsilon() ) |
|
|
|
|
{ |
|
|
|
|
// Adds the white noise to avoid singular covariance matrix.
|
|
|
|
|
c[0] += variance; |
|
|
|
@ -213,7 +213,7 @@ void GMM::calcInverseCovAndDeterm( int ci ) |
|
|
|
|
double dtrm = |
|
|
|
|
covDeterms[ci] = c[0]*(c[4]*c[8]-c[5]*c[7]) - c[1]*(c[3]*c[8]-c[5]*c[6]) + c[2]*(c[3]*c[7]-c[4]*c[6]); |
|
|
|
|
|
|
|
|
|
CV_Assert( dtrm > std::numeric_limits<double>::epsilon() ); |
|
|
|
|
CV_Assert( dtrm > std::numeric_limits<double>::epsilon() ); |
|
|
|
|
inverseCovs[ci][0][0] = (c[4]*c[8] - c[5]*c[7]) / dtrm; |
|
|
|
|
inverseCovs[ci][1][0] = -(c[3]*c[8] - c[5]*c[6]) / dtrm; |
|
|
|
|
inverseCovs[ci][2][0] = (c[3]*c[7] - c[4]*c[6]) / dtrm; |
|
|
|
|